• Title/Summary/Keyword: Frequency Mixer

Search Result 275, Processing Time 0.021 seconds

Design of a Frequency Mixer for the Microwave Phase Conjugator (마이크로파 공액 위상변위기용 주파수 혼합기의 설계)

  • 전중창;장병성;김태수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.434-437
    • /
    • 2003
  • In this paper, we have developed a frequency mixer for the microwave phase conjugator. The circuit topology is the gate mixer using a pseudomorphic HEMT device. The operating frequencies are 4.0 GHz 2.01 GHz, and 1.99 GHz for LO, RF, and IF, respectively. Conversion gain is measured to be 12 dB and 1 dB compression point -34 dBm at the LO power of -4 dBm.

  • PDF

The Design of a Sub-Harmonic Dual-Gate FET Mixer

  • Kim, Jeongpyo;Lee, Hyok;Park, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, a sub-harmonic dual-gate FET mixer is suggested to improve the isolation characteristic between LO and RF ports of an unbalanced mixer. The mixer was designed by using single-gate FET cascode structure and driven by the second harmonic component of LO signal. A dual-gate FET mixer has good isolation characteristic since RF and LO signals are injected into gatel and gate2, respectively. In addition, the isolation characteristic of a sub-harmonic mixer is better than that of a fundamental mixer due to the large frequency separation between the LO and RF frequencies. As RF power was -30 ㏈m and LO power was 0 ㏈m, the designed mixer yielded the -47.17 ㏈m LO-to-RF leakage power level, 10 ㏈ conversion gain, -2.5 ㏈m OIP3, -12.5 ㏈m IIP3 and -1 ㏈m 1 ㏈ gain compression point. Since the LO-to-RF leakage power level of the designed mixer is as good as that of a double-balanced mixer, the sub-harmonic dual-gate FET mixer can be utilized instead.

High Conversion Gain and Isolation Characteristic V-band Quadruple Sub-harmonic Mixer (고 변환이득 및 격리 특성의 V-band용 4체배 Sub-harmonic Mixer)

  • Uhm, Won-Young;Sul, Woo-Suk;Han, Hyo-Jong;Kim, Sung-Chan;Lee, Han-Shin;An, Dan;Kim, Sam-Dong;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, we have proposed a high conversion and isolation characteristic V-band quadruple sub-harmonic mixer monolithic circuit which is designed and fabricated for the millimeter wave down converter applications. While most of the sub-harmonic mixers use a half of fundamental frequency, we adopt a quarter of the fundamental frequency. The proposed circuit is based on a sub-harmonic mixer with APDP(anti-parallel diode pair) and the 0.1 ${\mu}{\textrm}{m}$ PHEMT's (pseudomorphic high electron mobility transistors). Lumped elements at IF port provide better selectivity of IF frequency and increase isolation. Maximum conversion gain of 0.8 ㏈ at a LO frequency of 14.5㎓ and at a RF frequency of 60.4 ㎓ is measured. Both LO-to-RF and LO-to-IF isolations are higher than 50 ㏈. The conversion gain and isolation characteristic are the best performances among the reported quadruple sub-harmonic mixer operating in the V-band millimeter wave frequency thus far.

Manufacture of a single gate MESFET mixer at PCS frequency band (PCS 주파수 대역 단일 게이트 MESFET 혼합기의 제작)

  • 이성용;임인성;한상철;류정기;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • In this paper, we describe a single-gate MESFET mixer at PCS(Personal Communication Service) frequency band. The PCS frequency band is 1965~2025 MHz in FR and 140 MHz in IF irrespectly. The design of the mixer was executed by microwave simulator, EEsof Libra. The matching network is consisted of rectangular inductor, MIM capacitor and open stub. The ma- nufacture work was accomplished by the micro-pen and wedge-bonder. The mixer showed $6.69\pm0.65$ dB of conversion gain, $-14.9\pm3.5$dB of RF reflection coefficient and 57.83 dB of LO/IF isolation at 10 dBm of LO power when LO frequency is 1855 MHz. When this mixer is used at PCS terminal, IF-amplifier which compensates the conversion loss of diode mixer may be omitted.

  • PDF

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

A Development of Vibration Analysis Technique of A Mixer (교반기의 진동 해석 기술 개발)

  • Park, Jin-Ho;Lee, Jeong-Han;Kim, Bong-Soo;Ahn, Chang-Gi;Kang, Mun-Hu;Joo, Yoon-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.421-426
    • /
    • 2003
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. The mixer normally consists of impeller, shaft, hub, reduction gear, and the driving motor. It is one of the key design issues to confirm that the vibration caused by the rotation of the shaft should not coincide with the natural vibration frequency of the shaft itself. The vibration characteristics of the hydrofoil type mixer, which is the most widely used in real plants are evaluated through the finite element modeling and verified by experiment using the mock-up facility. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz which showed in good agreement with the experiment. The higher natural frequencies to the 2nd, 3rd, and 4th modes are also verified by the experiment. Thus the developed model is to be utilized for the structural design of the real mixer system.

  • PDF

Design of 5.8 GHz Wireless LAN Sub Harmonic Pumped Resistive Mixer (5.8GHz 무선 랜용 서브 하모닉 저항성 혼합기의 설계)

  • Yoo, Hong-Gil;Kim, Wan-Sik;Kang, Jeong-Jin;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.73-78
    • /
    • 2004
  • In this paper, it is designed for 5.8GHz Wireless LAN sub harmonic resistive mixer. Sub harmonic resistive mixer is constituted by advantage of sub harmonic mixer and resistive mixer. Sub harmonic resistive mixers mix harmonics of LO with RF and obtain IF frequency. Therefore, it was possible to use decreasing LO frequency than conventional mixers. And, Sub harmonic resistive mixer has low IMD because of using unbiased channel resistance of GaAs FET. When LO power is 13dBm, the conversion loss of manufactured sub harmonic resistive mixer is 10.67 dB. And IIP3 of mixer is 21.5dBm.

  • PDF

Design of Double Bond Down Converting Mixer Using Embeded Balun Type (발룬 내장형 이중대역 하향 변환 믹서 설계 및 제작)

  • Lee, Byung-Sun;Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • This paper describes the design of frequency down converting Mixer in the receiver to use compound semiconductor and CMOS product process. The basic theory and structure of frequency down converting Mixer is surveyed, and we design mixer circuit with active balun which use the compound semiconductor and CMOS process. This mixer convert a single ended signal to differential signal at input port of RF and LO instead of matching circuit to get dual band balanced mixer structure and characteristic broadband. This designed mixer has a conversion gain $-1{\sim}-6[dB]$ at $2{\sim}6[GHz]$ bandwidths. However, the simulation of the designed mixer with active balun has the result of a 7[dB] conversion gain for -2[dBm] LO input power and -10[dBm] input P1[dB] at 5.8[GHz].

Design of a LNA-Mixer for 2.45GHz RFID Reader (2.45GHz 대역 RFID Reader 를 위한 LNA -Mixer 설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.415-418
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 35dB for -40dBm input RF power, LO power is 0dBm and RF frequency is 2.45 GHz and IIP3 is -4dBm. The layout of LNA-Mixer for one-chip design in a $0.18-{\mu}m$ TSMC process has 2.6mm ${\times}$ 1.3mm size.

  • PDF

Ka-band high-$T_c$ superconductor and III-V semiconductor hybrid balanced mixer

  • Kwak, M.H.;Suh, J.D.;Kang, Kwang-Yong;Han, S.K.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.15-20
    • /
    • 2000
  • We demonstrated a single balanced mixer of the combination of high-T. superconductor (HTS) and III-V GaAs beam lead Schottky diodes operating in the mini-cryogenic chamber. The HTS hybrid mixer was designed with a center frequency of 27.5 GHz and a bandwidth of 1 GHz, and consisted of a rat-race coupler circuit with beam-lead diodes attached to its balanced ports. The HTS hybrid mixer with 1 GHz RF bandwidths exhibits a conversion loss of 6 dB. A LO-to-RF isolation was greater than 40 dB in the range of operating frequencies. Since the HTS/III-V hybrid mixer devices have lower noise and conversion loss, this technique provide us with new capabilities that can be effectively utilized in the field of local-point distribution service (LMDS) systems.

  • PDF