• Title/Summary/Keyword: Frequency Keyword Analysis

Search Result 316, Processing Time 0.025 seconds

The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market (텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교)

  • Won, Jonggwan;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.

Locational Characteristics of Cafes in Jeju Island and the Changes: Offline and Online Influences (제주도 카페 입지의 특성과 변화: 오프라인과 온라인의 영향)

  • Ham, Yuhee;Park, Sohyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • The purpose of this study is to examine the locational characteristics of cafes in Jeju Island and the changes. For the purpose, we identify the spatial distribution patterns of openings and closings by period from the first opening of cafes in Jeju Island to the present. In particular, we analyze the spatial distribution characteristics found in the locations of cafes that have been opened and closed after the outbreak of COVID-19, in which new stores have significantly increased. In addition, we identify the regional attributes and the influence of online that have affected the distribution of currently open cafes and cafes that have opened or closed during the COVID-19 outbreak. As a result of empirical analysis, Jeju Island is a tourist destination and island region with the characteristics of determining major destinations through information search, showing a different distribution form from the location of cafes in inland cities. In particular, as a result of frequency analysis by extracting keyword search volume for cafes in Jeju Island, online accessibility such as information search for new areas and places in Jeju Island has become more diversified and expanded after COVID-19. In addition, as a result of calculating the distance to cafes by road size, the relationship between physical location and road accessibility, which has traditionally been an important factor, was relatively low. This study is meaningful in that it revealed the distribution patterns and characteristics of cafe locations in Jeju Island by reflecting the influence of online and offline.

Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data (문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석)

  • Ryu, Jae Pil;Lee, Ji Young;Jeong, Jeong Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • Recently, Korea's cultural content industry is developing, and behind the growing recognition around the world is the real-time sharing service of global network users due to the development of science and technology. In particular, in the case of YouTube, its propagation power is fast and powerful in that everyone, not limited users, can become potential video providers. As more than 80% of mobile phone users are using YouTube in Korea, YouTube's information means that psychological factors of users are reflected. For example, information such as the number of video views, likes, and comments of a channel with a specific personality shows a measure of the channel's personality interest. This is highly related to the fact that information such as the frequency of keyword search on portal sites is closely related to the stock market economically and psychologically. Therefore, in this study, YouTube information from a representative entertainment company is collected through a crawling algorithm and analyzed for the causal relationship with major variables related to stock prices. This study is considered meaningful in that it conducted research by combining cultural content, IT, and financial fields in accordance with the era of the fourth industry.

Analysis on the Trends of Studies Related to the National Competency Standard in Korea throughout the Semantic Network Analysis (언어네트워크 분석을 적용한 국가직무능력표준(NCS) 연구 동향 분석)

  • Lim, Yun-Jin;Son, Da-Mi
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.48-68
    • /
    • 2016
  • This study was conducted to identify the NCS-related research trends, Keywords, the Keywords Networks and the extension of the Keywords using the sementic network analysis and to seek for the development plans about NCS. For this, the study searched 345 the papers, with the National Competency Standards or NCS as a key word, among master's theses, dissertations and scholarly journals that RISS provides, and selected a total of 345 papers. Annual frequency analysis of the selected papers was carried out, and Semantic Network Analysis was carried out for 68 key words which can be seen as key terms of the terms shown by the subject. The method of analysis were KrKwic software, UCINET6.0 and NetDraw. The study results were as follows: First, NCS-related research increased gradually after starting in 2002, and has been accomplishing a significant growth since 2014. Second, as a result of analysis of keyword network, 'NCS, development, curriculum, analysis, application, job, university, education,' etc. appeared as priority key words. Third, as a result of sub-cluster analysis of NCS-related research, it was classified into four clusters, which could be seen as a research related to a specific strategy for realization of NCS's purpose, an exploratory research on improvement in core competency and exploration of college students' possibility related to employment using NCS, an operational research for junior college-centered curriculum and reorganization of the specialized subject, and an analysis of demand and perception of a high school-level vocational education curriculum. Fourth, the connection forming process among key words of domestic study results about NCS was expanding in the form of 'job${\rightarrow}$job ability${\rightarrow}$NCS${\rightarrow}$education${\rightarrow}$process, curriculum${\rightarrow}$development, university${\rightarrow}$analysis, utilization${\rightarrow}$qualification, application, improvement${\rightarrow}$plan, operation, industry${\rightarrow}$design${\rightarrow}$evaluation.'

A Disaster Victim Management System Using Geographic Information System (지리정보시스템을 활용한 재난피해자 관리시스템)

  • Hwang, Hyun-Suk;Choi, Eun-Hye;Kim, Chang-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.59-72
    • /
    • 2011
  • The research of psychological supporting systems as safety and welfare for disaster victims damaged psychologically as well as physically by a sudden disaster to return to effectively their social life has been carried. The domestic National Emergency Management Agency(NEMA) is operating the Disaster Victim Psychology Support Center that helps with curing damaged psychology and studies the transmission system of psychology management services, the classification of victims for disaster psychology support, and emergency consultation method to systemically support disaster psychology management. However, current psychology supporting centers provide the simple information for supporting centers such as medical and social welfare organizations. The development research of IT-based management systems to obtain needed information to construct the proposed systems curing psychological damage is still primitive step. Therefore, this paper shall propose a GIS-based integrated management system for victims and managers to effectively share related information one another and to return to victims' social life as soon as possible. Also, we implement a simple prototype system based on the Web. The proposed system supports the spatial search and statistical analysis based on map as well as keyword search, because having the location information on disaster victims, damage occurrence places, welfare and medical institutions, and psychological supporting centers. In addition, this system has the advantage reducing the frequency of disaster damage by providing aids in making efficient policy systems for the managers.

Research Trends on Related to Artificial Intelligence for the Visually Impaired : Focused on Domestic and Foreign Research in 1993-2020 (시각장애인을 위한 인공지능 관련 연구 동향 : 1993-2020년 국내·외 연구를 중심으로)

  • Bae, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.688-701
    • /
    • 2020
  • In this study, a total of 68 domestic and international papers were selected from 1993 to August 2020 in order to examine the research trends related to artificial intelligence for the visually impaired. The papers were compared and analyzed by the number of papers published by year, research method, research topic, keyword analysis status, research type, and implementation method. As a result of the study, the number of papers during the study period seemed to increase steadily. But in the case of domestic research, It can be seen that it has become active since 2016. As for research methods, development research accounted for 89.7% of both domestic and foreign research. Keywords was in Visually Impaired, Deep Learning, and Assistive Device order in domestic research. And it was in Visually Impaired, Deep learning, Artificial intelligence order in foreign research. There was a difference in the frequency of words. Research type were Design, development and implementation both in domestic and foreign. Implementation method were in System 13.2%, Solution 7.4%, App. 4.4% order in domestic research, and it was in System 32.4%, App. 13.2%, Device 7.4% order in foreign research. As for the applied technology of the implementation method, were in YOLO 2.7%, TTS 2.1%, Tensorflow 2.1% order in domestic research, and it was used in CNN 8.0%, TTS 5.3%, MS-COCO 4.3% order in foreign research. The purpose of this study was to compare and analyze the trends of artificial intelligence-related research targeting the visually impaired, to immediately know the current status of domestic and foreign research, and to present the direction of artificial intelligence research for the visually impaired in the future.

Analysis of interest in implant using a big data: A web-based study (빅 데이터를 이용한 임플란트에 대한 관심도 분석: 웹 기반 연구)

  • Kong, Hyun-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • Purpose: The purpose of this study was to analyze the level of interest that common Internet users have in dental implant using a Google Trends, and to compare the level of interest with big data from National Health Insurance Service. Materials and methods: Google Trends provides a relative search volume for search keywords, which is the average data that visualizes the frequency of searches for those keywords over a specific period of time. Implant was selected as the search keyword to evaluate changes in time flows of general Internet users' interest from 2015 to 2019 with trend line and 6 month moving average. Relative search volume for implant was analyzed with the number of patients who received National Health Insurance coverage for implant. Interest in implant and conventional denture was compared and popular related search keywords were analyzed. Results: Relative search volume for implant has increased gradually and showed a significant positive correlation with the total number of patients (P<.01). Interest in implant was higher than denture for most of the time. Keywords related to implant cost were most frequently observed in all years and related search on implant procedure was increasing. Conclusion: Within the limitations of this study, the public interest in dental implant was gradually increasing and specific areas of interest were changing. Web-based Google Trends data was also compared with traditional data and significant correlation was confirmed.

The Analysis of Changes in East Coast Tourism using Topic Modeling (토핑 모델링을 활용한 동해안 관광의 변화 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • The amount of data is increasing through various IT devices in a hyper-connected society where the 4th revolution is progressing, and new value can be created by analyzing that data. This paper was collected total 1,526 articles from 2017 to 2019 in central magazines, economic magazines, regional associations, and major broadcasting companies with the keyword "(East Coast Tourism or East Coast Travel) and Gangwon-do" through Bigkinds. It was performed the topic modeling using LDA algorithm implemented in the R language to analyze the collected 1,526 articles. It was extracted keywords for each year from 2017 to 2019, and classified and compared keywords with high frequency for each year. It was setted the optimal number of topics to 8 using Log Likelihood and Perplexity, and then inferred 8 topics using the Gibbs Sampling method. The inferred topics were Gangneung and Beach, Goseong and Mt.Geumgang, KTX and Donghae-Bukbu line, weekend sea tour, Sokcho and Unification Observatory, Yangyang and Surfing, experience tour, and transportation network infra. The changes of articles on East coast tourism was was analyzed using the proportion of the inferred eight topics. As the result, the proportion of Unification Observatory and Mt. Geumgang showed no significant change, the proportion of KTX and experience tour increased, and the proportion of other topics decreased in 2018 compared to 2017. In 2019, the proportion of KTX and experience tour decreased, but the proportion of other topics showed no significant change.

An Overview on Features of Research Topics in the Asia Pacific Journal of Small Business (APJSB) for 40 Years (「중소기업연구」 40년 연구주제의 전체 조망)

  • Kim, Sanghee;Lee, Choonwoo
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.47-67
    • /
    • 2020
  • This study analyzed the papers provided by Asia Pacific Journal of Small Business (APJSB) for 40 years. The purpose of this study is looking at the research trends about small and medium business. We tried to identify some stream and feature without manipulation. Textmining and Frequency analysis are executed on topics of every published paper in APJSB to 2019 from 1979. The result suggest that important keyword and feature of research topics in APJSB. And the result show the period feature as well as the whole of research trend in APJSB for 40 years. Futhermore, we suggest some implications derived from the results by adapting business ecosystem model and business managerial system model.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.