• Title/Summary/Keyword: Frequency Hopping

Search Result 267, Processing Time 0.029 seconds

Analysis of Frequency Hopping Signals using Wavelet Transform-Based Scalogram (Wavelet 변환기저 Scalogram을 이용한 주파수 도약신호 분석)

  • 박재오;이정재
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.45-48
    • /
    • 2000
  • In this paper algorithms of frequency hopping sequences generation such as Lempel-Greenberger, optimum Lempel-Greenberger and Kumar sequences for spread spectrum communications are described. Using the scalogram based on wavelet transform, time-frequency characteristics of frequency hopped signals corresponding to the considered hopping sequences are analyzed.

  • PDF

Detection Probability Improvement Scheme Optimized for Frequency-Hopping Signal Detection (주파수 도약 신호 탐지에 최적화된 탐지 확률 향상 기법)

  • Lee, In-Seok;Oh, Seong-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.783-790
    • /
    • 2018
  • The frequency-hopping technique is one of the spread-spectrum techniques. Frequency hopping is a communication system in which the carrier frequency channel is hopped within the wideband. Therefore, a frequency-hopping system has such advantages as antijamming and low probability of intercept. This system is often used in military communications. Because frequency-hopping signal detection is difficult, it is an important research issue. A novel detection technique is proposed that can improve detection probability. When the received signal is transformed to a frequency domain sample by fast Fourier transform, spectral leakage lowers the detection probability. This problem can be solved by using the Hamming window, and the detection probability can be increased. However, in a frequency-hopping environment, the windowing technique lowers the detection probability. The proposed method solves this weakness. The simulation results show that the proposed detection technique improves the detection probability by as much as 13 %.

Analysis of Optimal Parameters for Hopping Pilot Beacon in a CDMA Mobile Cellular Network

  • Choi, Wan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.47-57
    • /
    • 2007
  • In this paper, optimal parameters of a hopping pilot beacon are analyzed in a CDMA mobile cellular network. The hopping pilot beacon is used for inter-frequency handoff. It can reduce the number of pilot beacons needed for the inter-frequency handoff by transmitting neighbor frequency pilots periodically through a pilot beacon. The optimal parameters for transmission time and period of the hopping pilot bacon are derived by mathematical approach. It is highly recommended that the optimal values for the hopping pilot beacon under various operation environments.

  • PDF

Design and Implementation of Tracking Filter in using Frequency Hopping System (주파수도약 시스템용 트래킹 필터의 설계 및 제작)

  • 이규진;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.205-208
    • /
    • 2000
  • In this paper, we design Tracking Filter that is principal component of Frequency Hopping System. This filter can acquire hopping pattern in short time and track it at high speed. This is high Q, narrowband, RF filter whose center frequency is controlled digitally between 30MHz ∼ 88MHz.

  • PDF

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

The Design and Performance Analysis of Synchronization on Frequency Hopping Network Communication System (주파수도약 네트워크 통신 시스템의 구조설계 및 동기성능 분석)

  • Lim, So-Jin;Bae, Suk-Neung;Han, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-827
    • /
    • 2013
  • Compared to legacy frequency hopping communications, future radio communications are required the secure and high data rate, ad-hoc network communication. In this paper, we have designed the network communication structure on the frequency hopping mode, and analyzed the performance of synchronization on the frequency hopping network radio systems. The design results are shown the initial sync. phase of approximately 9 hops and the traffic packet phase of approximately 30 hops. Also, we have simulated the performance on the communication conditions which are carrier bandwidth of 50kHz, user data rate of 64kbps and OQPSK modulation scheme in AWGN. In the simulation, we analyzed the correlation and the performance of synchronization success. The result of simulation show 99% probability for synchronization success at $E_b/N_o$ -4dB.

A Blind Hopping Phase Estimator in Hopped FM/BFSK Systems (도약 FM/BFSK 시스템에서 블라인드 도약 위상 추정기)

  • Seong, Jinsuk;Jeong, Min-A;Kim, Kyung-Ho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.573-581
    • /
    • 2014
  • We proposed a hopping phase estimator to demodulate the received signals without any hopping information in frequency hopping spread spectrum systems. The demodulation process in this paper is as follows: hopped frequency tracking is accomplished by choosing a frequency component with maximum amplitude after taking discrete Fourier transform and a hopping frequency estimator which estimates the phase generated by hopped frequency is established through difference product and down-sampling. We obtained the probability density function and variance performance of the proposed estimator and confirmed that the analysis and the simulation results were agreed with each other.

The hybrid method of Listen-Before-Talk and Adaptive Frequency Hopping for coexistence of Bluetooth and WLAN (블루투스 및 무선 LAN 시스템의 동시지원을 위해 Listen-Before-Talk 기법을 결합한 Adaptive Frequency Hopping 방식의 제안)

  • ;Bin Zhen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.706-718
    • /
    • 2002
  • In bluetooth system, there are two kinds of interference. One is the frequency static interference, for example 802.11 direct sequence, the interferer uses fixed frequency band. Another is frequency dynamic interference, for example other piconets or 802.11 frequency hopping, the interferer uses dynamic frequency channel and cant be estimated. In this paper we introduce a novel solution of hybrid method of Listen-Before-Talk (LBT) and Adaptive Frequency Hopping (AFH) to address the coexistence of bluetooth and Direct Sequence of wireless local area network (WLAN). Before any bluetooth packet transmission, in the turn around time of the current slot, both the sender and receiver sense the channel whether there is any transmission going on or not. If the channel is busy, packet transmission is withdrawn until another chance. This is the LBT in Bluetooth. Because of asymmetry sense ability of WLAN and bluetooth, AFH is introduced to combat the left front-edge packet collisions. In monitor period of AFH, LBT is performed to label the channels with static interference. Then, all the labeled noisy channels are not used in the followed bluetooth frequency hopping. In this way, both the frequency dynamic and frequency static interference are effectively mitigated. We evaluate the solution through packet collision analysis and a detail realistic simulation with IP traffic. It turns out that the hybrid method can combat both the frequency dynamic and frequency static interference. The packet collision analysis shows it almost doubles the maximal system aggregate throughput. The realistic simulation shows it has the least packet loss.

A Study on Frequency Hopping Signal Detection Using a Polyphase DFT Filterbank (다상 DFT 필터뱅크를 이용한 도약신호 검출에 관한 연구)

  • Kwon, Jeong-A;Lee, Cho-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.789-796
    • /
    • 2013
  • It is known that the detection of hopping signals without any information about hopping duration and hopping frequency is rather difficult. This paper considers the blind detection of hopping signal's information such as hopping duration and hopping frequency from the sampled wideband signals. In order to find hopping information from the wideband signals, multiple narrow-band filters are required in general, which leads to huge implementation complexity. Instead, this paper employs the polyphase DFT(discrete Fourier transform) filterbank to reduce the implementation complexity. This paper propose hopping signal detection algorithm from the polyphase DFT filterbank output. Specifically, based on the binary image processing, the proposed algorithm is developed to decrease the memory size and H/W complexity. The performance of the proposed algorithm is evaluated through the computer simulation and FPGA (field programmable gate array) implementation.

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.