• Title/Summary/Keyword: Freezing/thawing

Search Result 931, Processing Time 0.029 seconds

Unsaturated Soil Properties of Compacted Soil at Sub-Zero Temperature (영하온도에서 다짐된 지반의 불포화 특성)

  • Lee, Jeonghyeop;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2018
  • Recently, construction disasters in thawing season are increasing due to the ground collapse and it is related to the improper compaction during winter season. Compaction at sub-zero temperature reduces the compaction effect and the research of mechanical properties of thawed soil after winter compaction can be used as useful data to understand the behavior of the ground in the thawing season. On the other hand, the research interest in the unsaturated soil mechanics has been increasing in the field of the geotechnical engineering. Therefore, it is expected that the research of unsaturated characteristics under the compaction of sub-zero temperature and freezing & thawing condition provides information to the researchers in the related fields. Therefore, in this research, unsaturated soil-water characteristics test and unsaturated uniaxial compression test were conducted on the specimens compacted at sub-zero temperature and continuous freezing & thawing condition to investigate change of unsaturated characteristics and matric suction. Based on the test results, the change of matric suction and the decrease of strength and stiffness were observed with the freezing & thawing conditions. Especially in case of the weathered soil, the strength and matric suction were significantly reduced with lower temperature and more repetition of freezing & thawing cycles. This result implies that compaction of sub-zero temperature and freezing & thawing cycles will have a considerable influence on the stability of the ground.

Effects of Incubation and Thawing Temperature on Frozen-thawed Stallion Epididymal Spermatozoa (말의 정소상체 정자의 동결 후 해동 온도 및 Incubation의 효과)

  • Kim, Keun-Jung;Lee, Kyung-Bon;Lee, Ji-Hye;Kim, Eun-Young;Han, Kil-Woo;Park, Kang-Sun;Kim, Min-Kyu
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.297-302
    • /
    • 2013
  • Cryopreservation of epididymal spermatozoa offers a potential tool for rescuing genetic material from males of genetically elite populations. Castration, catastrophic injury, sudden death or any other event that makes semen collection or mating impossible may prematurely terminate a stallion reproduction. Stallion epididymal spermatozoa vary widely in the loss of progressive motility, acrosomal integrity, and viability during freezing and thawing. The objective of this work was to investigate the effect of (1) freezing package types on cryopreservation efficiency, (2) thawing temperatures (37, 56 or $70^{\circ}C$) on Computer Assisted Sperm Analysis (CASA) parameters and (3) post-thawing incubation time (0, 1, 2 or 4h) on castrated stallion epididymis. Post-thawed sperm motility ranged between 59.69% and 64.28% ($56^{\circ}C$ and $37^{\circ}C$) in various thawing temperatures. When stallion epididymis sperm was frozen, straw was better than freezing tube on VCL (Velocity of Curvilinear Line) and VAP (Velocity of Average Path) parameter. Higher percentage of motility was observed at $37^{\circ}C$ thawing temperature even though no significant difference was observed among various temperatures. The motility, VCL, ALH (Amplitude of Lateral Head displacement), VAP, BCF (Beat-Cross Frequency) and STR (Straightness index) parameter of post-thawed sperm were significantly decreased by increasing the incubation time for all thawing temperatures. The present study showed that type of freezing package (Straw vs. Freezing tube) was not significantly different on cryopreservation efficiency. Furthermore, stallion epididymal spermatozoa frozen-thawed at $37^{\circ}C$ for 1 min resulted the highest proportion of motility and velocity movement. In addition, motility and viability of frozen-thawed stallion epididymal spermatozoa were also decreased by incubation.

Changes of Characteristics in Red Pepper by Various Freezing and Thawing Methods (홍고추의 저장온도 및 해동조건에 따른 물리화학적 특성 변화)

  • Lee, Hye-Eun;Lim, Chai-Il;Do, Kyung-Ran
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.227-232
    • /
    • 2007
  • The development of an effective long-term storage protocol for harvested fresh pepper is urgently required to increase the market for pepper products. The protocol must minimize quality loss, so that the product may be used either as a spice or as a raw material for processed pepper products, both in the home and in food processing plants. We investigated the optimum size of pepper fruits, freezing temperatures, storage periods, and thawing methods, to establish an optimum storage protocol. This study was conducted not only to develop freezing and thawing methods for long term storage of harvested red pepper, but also to develop processed pepper products utilizing the stored pepper. We aimed to expand the pepper products market and to increase the incomes of pepper growers. Whole red pepper, sliced red pepper, and crushed red pepper were frozen and stored at $-5^{\circ}C,\;-20^{\circ}C,\;or\;-40^{\circ}C$. The soluble solid content and the vitamin C level showed maximal stability at $-40^{\circ}C$, although total free sugars decreased on storage at all temperatures tested. Such Changes were more marked at $-5^{\circ}C$ than at the other(lower) temperature tested. The vitamin C content of whole red pepper was higher than that of sliced red pepper or crushed red pepper. Room-temperature thawing resulted in twice the drip loss seen on low temperature($5^{\circ}C$) thawing or microwave oven thawing. Brown discoloration was a serious problem with room temperature thawing. Total free sugars were higher in samples thawed at low temperature or in the microwave oven, compared to the level seen after room-temperature thawing. pepper samples thawed at low temperature scored higher in sensory tests than samples thawed at room temperature.

Acrosomal Changes and Survival of Following Preservation of Dog Spermatozoa II. Effect of Different Freezing Ramp Rates (개 정자의 보존방법에 따른 첨체 및 생존성의 변화 II. 동결보존에 따른 효과)

  • 정정란;유재규;양성열;여현진;박종식
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • The aim of this study was to identify the method on extended canine semen exposed to freezing as assessed by motility, survival and acrosomal changes following different freezing ramp rates. Five ejaculates collected by digital manipulation twice weekly from three dogs (Shih-Tzu) were added Tris-Egg Yolk (TE) buffer and divided into 4 aliquots according to formulation of our laboratory. After cooling to 4$^{\circ}C$ by ramp rate of 0.6$^{\circ}C$/min, the samples frozen by ramp rates of 1.6$^{\circ}C$/min to -$25^{\circ}C$, 3$^{\circ}C$/min to -35$^{\circ}C$, 8.9$^{\circ}C$/min to -7$0^{\circ}C$ and 19$^{\circ}C$/min to -11$0^{\circ}C$, respectively, and then stored in L$N_2$for 2days. Each sample was evaluated on their motility, survivability and acrosome integrity at different thawing temperature. The ramp rate of 3$^{\circ}C$/min to -35$^{\circ}C$/h for freezing and thawing temperature of 37$^{\circ}C$ obtained the highest results to improve survivability, motile spermatozoa and intact acrosome appearance than other onditions. In conclusion, we may suggest freezing semen for canine artificial insemination is more efficient with freezing at a ramp rate of -3$^{\circ}C$/min to -35$^{\circ}C$ and thawing with a water bath adjusted to 37$^{\circ}C$.

  • PDF

Study on the Prediction of Concrete Deterioration Subjected to Cyclic Freezing and Thawing (동결융해작용을 받는 콘크리트의 열화예측에 관한 연구)

  • 고경택;이종석;이장화;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.795-798
    • /
    • 1999
  • Deterioration induced by the freezing and thawing in concrete often leads to the reduction in concrete durability by the cracking or surface spalling. In this paper, the deterioration prediction model for concrete structures subjected to the irregular freeze-thaw was proposed from the results of accelerated laboratory test using the constant temperature condition and acceleration factor from the in-situ weather data.

  • PDF

Freezing and Thawing Resistance of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 동결융해 저항성)

  • 이윤수;채경희;연규석;주명기;성찬용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1029-1034
    • /
    • 2001
  • The effects of binder content and silica sand content on the freezing and thawing resistance of lightweight polymer concrete are examined. As a result, the mass loss and pulse velocity of lightweight polymer concrete decrease with increasing binder content and silica sand content. The relative dynamic modulus and durability factor of lightweight polymer concrete reaches minimum at a silica sand content of 50% and a binder content of 28%, and is inclined to increase with increasing binder content and silica sand content.

  • PDF

Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material (무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가)

  • 김인섭;이종규;추용식;김병익;신영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

The Petrographic and Chemical Properties of Recycled Aggregate, and the Resistance of Concrete by Replacement Ratios of Recycled Aggregate to Rapid Freezing and Thawing (재생골재의 광물학적 및 화학적 특성과 대체율에 따른 동결융해 저항성)

  • 전쌍순;박현재;이효민;황진연;진치섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.625-630
    • /
    • 2002
  • The availability of natural aggregates has decreased in recent years due to depleting reserves. From the viewpoint of energy and resources saving, it may be advantageous to use the waste concrete as construction aggregates. The purpose of this study is to analyze petrographic and chemical properties of recycled aggregate, and to investigate the resistance of concrete to rapid freezing and thawing by using replacement ratios (0, 10, 20, 30, 40, 50, 60, 70, 100% ) of recycled aggregate.

  • PDF

An Experimental Study on the Recycled! Concrete Durability (재생 콘크리트의 내구성에 관한 실험적 연구)

  • 이명규;정상화;김인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.675-680
    • /
    • 2003
  • In this study, various tests are performed for the durability of the concrete using domestic recycled coarse aggregate including drying shrinkage, permeability, freezing-thawing resistance and $CO_2$ diffusivity. Tests of freezing-thawing resistance, chloride ion permeability and $CO_2$ diffusivity of recycled concrete show favorable results. But, the maximum drying shrinkage ratio to normal concrete is increased 24% with increasing substitution ratio of recycled aggregate. Therefore, for the use of recycled concrete in structures, the preventive measures of drying shrinkage is necessary in mix design and the adequate substitution ratio of recycled aggregate should be proposed.

  • PDF

A Study on the Freeze-Thaw Resistance of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 동결융해저항성에 관한 연구)

  • 이상태;전충근;김경민;최청각;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.233-236
    • /
    • 2003
  • This study is intended to investigate the resistance of frost damage of concrete for planting, which recycled aggregate is used, by freezing in air and thawing in water. According to the results, if AE agent of 0.005% is mixed in making concrete for planting, it is thought that the resistance of frost damage is guaranteed in winter because concrete for planting is not under severe freezing and thawing function, but under natural weather action.

  • PDF