• Title/Summary/Keyword: Freeze-Thaw Resistance

Search Result 178, Processing Time 0.026 seconds

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

A Study on the Mechanical Properties of Carbon Fiber Reinforced Cement Composite Impregnated in Polymer (폴리머 함침 탄소섬유보강 시멘트 복합체의 역학적 특성에 관한 연구)

  • ;;Lee, Burtrand. I.
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.107-118
    • /
    • 1992
  • In order to examine the mechanical properties of carbon fiber reinforced cement composites with silica powder PAN - based carbon fiber and Pitch- based carbon fiber, and polymer impregnators experimental studies on CFRC impregnated in polymer were carried out. The effects of types, length, and content~i of carbon fibers and matrices of fresh and hardened CFRC impregnated in polymer were examined. The test results show that compressive, tensile, and flexural strength of CFRC impregnated in polymer were much more iriCreased than those of air cured and autodaved CFIIC CFRC impregnated in polymer was also considerably effective in improving toughness, freeze thaw resistance, loss of shrinkage, and creep resist ance, compared with air cured and autoclaved CFRC.

Strength and Freezing-Thawing Properties of Recycled aggregate Concrete Mixed Fly Ash (플라이애쉬를 혼합한 재생골재 콘크리트의 강도 및 동결융해 특성)

  • 구봉근;류택은;이재범;양승규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.241-244
    • /
    • 1999
  • This study is represented the strength and freeing-thawing properties of recycled aggregate concrete mixed fly ash by experiment. The experimental variables are the substitution ratio of recycled aggregate and the mixing ratio of fly-ash. For each specimens, there were tested compressive strength and freeze-thaw resistance. It is able to find from the experimental result that the recycled aggregate concrete has good properties as general concrete on the compressive strength and the durability.

  • PDF

A Study on the Properties of High Volume FlyAsh Concrete (High Volume 플라이애쉬 콘크리트의 내구적 특성 연구)

  • 이진용;손해원;최수홍;정은경;조현수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.203-206
    • /
    • 1999
  • An experimental study is carried out to investigate the characteristics of concrete containing high volume fly ash. The compressive and tensile strength of fly ash concrete is slightly lower than those of ordinary concrete between 7and 28 days, however, the long-term compressive strength is significantly higher at 180 days. In durability, the high volume fly ash concretes are generally higher resistance of freeze and thaw and lowe chloride penetration, however, the depth of carbonation is increased with increasing fly ash content.

  • PDF

Durability Characteristics of High-Early-Strength Concrete (조기강도 콘크리트의 내구특성)

  • 원종필;김현호;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.991-996
    • /
    • 2001
  • The long-term durability characteristics of high-early-strength concrete were assessed. The effect of long-term durability characteristics of high-early-strength concrete were investigated. In experiment, two different types of fiber were adopted for improvement of durability. High-early-strength fiber reinforced concretes using regulated-set cements are compared with high-early-strength concrete without fiber. The durability performance of the laboratory-cured high-early-strength concrete specimens was determined by conducting an accelerated chloride permeability, abrasion resistance, freeze-thaw, surface deicer salt scaling and wet-dry repetition test. The results indicated that incorporation of fibers enhance durability performance.

  • PDF

Control of Crack and Enhanced Durability Performance of Face Slab Concrete (차수벽 콘크리트의 균열제어 및 성능향상에 관한 연구)

  • 임정열;정우성;김완영;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • The effects of substituting cement with fly ash(10%, 15%, 20%) and different fiber addition(polypropylene, cellulose, poly vinyl alcohol), on the control of microcrack and enhanced durability performance of face slab concrete in CFRD was studied experimentally It was conducted experiments of plastic shrinkage of mortar and concrete, and drying shrinkage of concrete. Also, durability test were carried out the chloride permeability, abrasion resistance and freeze-thaw repetition. Through the experimental results, it was concluded that ploy vinyl alcohol fiber containing concrete was the most effective mixture in control of cracking and durability.

  • PDF

An Experimental Study on the Mechanical Study and Durability of PFRC(Polypropylene Fiber Reinforced Concrete) (폴리프로필렌 섬유보강 콘크리트(PFRC)의 역학적 특성 및 내구성에 관한 실험적 연구)

  • 박승범;이봉춘;권혁준;윤준석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.293-298
    • /
    • 1998
  • The result of an experimental study on the mechanical properties and durability of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as strength, toughness and durability. The test variables are fiber content, fiber types, W/C ratio. PFRC shows the highest strength when the polypropylene fiber contents were increased to 2.0 vol.%. Also, freeze-thaw resistance and carbonation were somewhat more improved than plain concrete.

  • PDF

An Experimental Study on the Durability and Dryng Shrinkage of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 내구성 및 건조수축변형 특성에 관한 실험적 연구)

  • 박승범;윤의식;홍석주;박병철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.80-83
    • /
    • 1995
  • In order to develope and apply high-performance steel fiber reinforced concrete (SFRC), the effects of steel fibers on durability and long-term deformation of SFRC due to various mixing conditions have been studied. As the test result show, the manufacturing process technology of industrial SFRC is developed And the durability of SFRC such as freeze-thaw, resisteance abrasion resistance are significantly improved, the drying shrinkage of SFRC, is remarkably decreased by increasing the steel fiber contents than plain concrete

  • PDF

Freezing and Thawing Resistance of Hardened Cement Paste Containing Blending Materials in the Sea Water (혼합재를 사용한 시멘트경화체의 해수 중에서의 동결융해 저항성)

  • 이양수;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.589-596
    • /
    • 1990
  • In this study, the freezing and thawing resistance in sea-water of hardened cement paste was investigated by adding slag, diatomaceous earth and fly ash as blending materials and air entraining agent and superplasticizer as admixtures to the cement paste. The structure of hardened cement pate was densified by potential hydraulic properties and pozzolan reactivities of materials and the freezing and thawing resistance of the paste was improved with the effect blending materials and admixtures. As the blending materials were added to the paste, the quantity of C3A was relatively reduced and the formation of expansive ettringite was suppressed to decrease the penetration of sea-water or Cl-, SO42-ion, and then freeze-thaw resistance was enhanced. Particulary, when 40% of slag was mixed, the resistance was excellent.

  • PDF

Evaluation of Freezing-thawing Resistance by Sea water with Variation of micropores of slag concrete (슬래그 콘크리트의 미세 공극구조 변화에 따른 해수 동결융해 저항성능 평가)

  • Song, Gwon-Yong;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Kim, Hong-Seop;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.129-130
    • /
    • 2014
  • In the case of concrete structures which have been recently exposed to the marine environment, durability is greatly reduced by the freezing-thawing action. When it is used by appropriately replacing the ground granulated blast-furnace slag(GGBS) that is a industrial by-product, the concrete structure of marine environment is known to have a durability to freezing-thawing resistance. In this experiment, micropore in accordance with a replacement ratio of GGBS was confirmed to show different results respectively. The freeze-thaw resistance was showed different aspects respectively because it is different the amount of water in the pore due to the difference of micropore. Therefore, in this study, the freezing-thawing resistance of sea water by variation of micropores of slag concrete had been evaluated.

  • PDF