• Title/Summary/Keyword: Free-exciton

Search Result 68, Processing Time 0.031 seconds

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

The study of growth and characterization of CuGaTe$_2$single crystal thin films by hot wall epitaxy (Hot wall epitaxy(HWE) 방법에 의한 CuGaTe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.425-433
    • /
    • 2000
  • The stochiometric mix of evaporating materials for the $CuGaTe_2$single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0 and c_0$ were 6.025 $\AA$ and 11.931 $\AA$, respectively. To obtain the single crystal thin films, $CuGaTe_2$mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is 2.1$\mu\textrm{m}$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of $CuGaTe_2$single crystal thin films deduced from Hall data are $8.72{\times}10{23}$$\textrm m^3$, $3.42{\times}10^{-2}$ $\textrm m^2$/V.s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuGaTe_2$single crystal thin film, we have found that the values of spin orbit coupling $\Delta$s.o and the crystal field splitting $\Delta$cr were 0.0791 eV and 0.2463 eV at 10 K, respectively. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470 eV and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be 0.0490 eV, 0.0558 eV, respectively.

  • PDF

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates (산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성)

  • Lee, S.K.;Kim, J.Y.;Kwack, H.S.;Kwon, B.J.;Ko, H.J.;Yao, Takafumi;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.463-467
    • /
    • 2007
  • Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

Growth and Characterization of $ZnGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)에 의한 $ZnGa_2Se_4$단결정 박막 성장과 특성에 관한 연구)

  • 장차익;홍광준;정준우;백형원;정경아;방진주;박창선
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for ZnGa₂Se₄single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa₂Se₄mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were 610℃ and 450℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa₂Se₄single crystal thin films measured from Hall effect by von der Pauw method are 9.63×10/sup 17/㎤ and 296 ㎠/V·s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa₂Se₄single crystal thin film, we have found that the values of spin orbit splitting △so and the crystal field splitting Δcr were 251.9meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on th ZnGa₂Se₄single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (A°, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Growth and Characterization of $CuInTe_2$ Single Crystal thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE) 방법에 의한 $CuInTe_2$ 단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.212-223
    • /
    • 2000
  • A stochiometric mix of CuInTe₂ polycrystal was prepared in a honizonatal furnace. To obtain the single crystal thin films, CuInTe₂ mixed crystal was deposited on throughly etched GaAs(100) by the HWE system. The source and substrate temperatures were 610℃ and 450℃ respectively, and the thickness of the deposited single crystal thin film was 2.4㎛. CuInTe₂ single crystal thin film was proved to be the optimal growth condition when the excition emission spectrum was the strongest at 1085.3 nm(1.1424 eV) of photoluminescence spectrum at 10 K, and also FWHM of Double Crystal X-ray Rocking Curve (DCRC) was the smallest, 129 arcsec. The Hall effect on this sample was measured by the method of Van der Pauw, and the carrier density and mobility dependent on temperature were 9.57x10/sup 22/ electron/㎥, 1.31x10/sup -2/㎡/V·s at 293 K, respectively. The ΔCr(Crystal field splitting) and the ΔSo (spin orbit coupling splitting( measured at f10K from the photocurrent peaks in the short wavelength of the CuInTe₂ single crystal thin film were about 0.1200 eV, 0.2833 eV respectively. From the PL spectra of CuInTe₂ single crystal thin film at 10 K, the free exciton (E/sub x/) was determined to be 1064.5 nm(1.1647 eV) and the donor-bound exciton(D/sup 0/, X) and acceptor-bound exciton (A/sup 0/, X) were determined to be 1085.3 nm(1.1424 eV) and 1096.8 nm(1.1304 eV0 respectively. And also, the donor-acciptor pair (DAP)P/sub 0/, DAP-replica P₁, DAP-replica P₂ and self-activated (SA) were determined to be 1131 nm (1.0962 eV), 1164 nm(1.0651 eV), 1191.1 nm(1.0340 eV) and 1618.1 nm (0.7662 eV), respectively.

  • PDF

Growth and Optoelectrical Properties for $CuInS_2$ Single Crystal Thin Film ($CuInS_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.230-233
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuInS_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuInS_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.524\;{\AA}$ and $11.142\;{\AA}$, respectively. To obtain the single crystal thin films, $CuInS_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperature were 640 t and 430 t, respectively and the thickness of the single crystal thin films was $2{\mu}m$. Hall effect on this sample was measured by the method of van dot Pauw and studied on carrier density and temperature dependence of mobility. The carrier density and mobility deduced from Hall data are $9.64{\times}10^{22}/m^3,\;2.95{\times}10^{-2}\;m^2/V{\cdot}s$ at 293 K, respectively The optical energy gaps were found to be 1.53 eV at room temperature. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the thin film, we have found that the values of spin orbit coupling splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0211 eV and 0.0045 eV at 10 K, respectively. From PL peaks measured at 10K, 807.7nm (1.5350ev) mean Ex peak of the free exciton emission, also 810.3nm (1.5301eV) expresses $I_2$ peak of donor-bound exciton emission and 815.6nm (1.5201eV) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 862.0nm (1.4383eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

Photoluminescence Studies of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy

  • Kim, Min-Su;Nam, Gi-Woong;Kim, So-A-Ram;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.310-310
    • /
    • 2012
  • ZnO thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The optical properties of the ZnO thin films grown on PS were studied using room-temperature, low-temperature, and temperature-dependent photoluminescence (PL). The full width at half maximum (FWHM) of the near-band-edge emission (NBE) from the ZnO thin films was 98 meV, which was much smaller than that of ZnO thin films grown on a Si substrate. This value was even smaller than that of ZnO thin films grown on a sapphire substrate. The Huang-Rhys factor S associated with the free exciton (FX) emission from the ZnO thin films was found to be 0.124. The Eg(0) value obtained from the fitting was 3.37 eV, with ${\alpha}=3.3{\times}10^{-2}eV/K$ and ${\beta}=8.6{\times}10^3K$. The low- and high-temperature activation energies were 9 and 28 meV, respectively. The exciton radiative lifetime of the ZnO thin films showed a non-linear behavior, which was established using a quadratic equation.

  • PDF