• Title/Summary/Keyword: Free-Surface Flows

Search Result 198, Processing Time 0.02 seconds

Numerical Simulation of the Flow around Advancing Ships in Regular Waves using a Fixed Rectilinear Grid System (고정된 직교격자계를 이용한 파랑 중 전진하는 선박주위 유동의 수치시뮬레이션)

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.419-428
    • /
    • 2014
  • This paper presents a numerical simulation method for the flow around advancing ships in regular waves by using a rectilinear grid system. Because the grid lines do not consist with body surface in the rectilinear grid system, the body geometries are defined by the interaction points of those grid lines and the body surface. For the satisfaction of body boundary conditions, no-slip and divergence free conditions are imposed on the body surface and body boundary cells, respectively. Meanwhile, free surface is defined with the modified marker density method. The pressure on the free surface is determined to make the pressure gradient terms of the governing equations continuous, and the velocity around the free surface is calculated with the pressure on the free surface. To validate the present numerical method, a vortex induced vibration (VIV) phenomenon and flows around an advancing Wigley III ship model in various regular waves are simulated, and the results are compared with existing and corresponding research data. Also, to check the applicability to practical ship model, flows around KRISO Container Ship (KCS) model advancing in calm water are numerically simulated. On the simulations, the trim and the sinkage are set free to compare the running attitude with some other experimental data. Moreover, flows around the KCS model in regular waves are also simulated.

Experimental/Numerical Study on a Secondary Flow within a Rectangular Container Subjected to a Horizontal Oscillation (수평가진을 받는 직사각형 용기 내 2차 유동의 실험적/수치해석적 연구)

  • Byun, Min-Soo;Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1014-1021
    • /
    • 2002
  • Analysis of two-dimensional secondary flows given by an oscillatory motion of a liquid with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We considered the effects of the free-surface properties such as the surface tension and the dilatational viscosity. The boundary-layer analysis as well as an experiment is used in establishing the free surface properties. The secondary flow patterns are visualized by a laser sheet. It is shown that the secondary flow patterns predicted by the numerical methods are in good agreement with the experimental results.

Time-Domain Simulation of Nonlinear Free-Surface Flows around a Two-Dimensional Hydrofoil (2차원 수중익주위 비선형 자유표면유동의 시간영역 시뮬레이션)

  • Yong-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.45-56
    • /
    • 1994
  • A computationally efficient numerical method based on potential flow is developed for time-domain simulation of the nonlinear free-surface flows around a 2-dimensional hydrofoil. This numerical method, namely, spectral/boundary-element method, is a mixed one of the high-order spectral method and the boundary-element method in time-domain. The high-order spectral method is used to calculate the nonlinear evolution of free-surface, and the boundary-element method is used to calculate the effects of the hydrofoil and the shed vortex. As application examples, nonlinear free-surface flows around a 2-dimensional hydrofoil which starts from the rest and translates near the free-surface with or without harmonic oscillations are calculated. Nonlinear/unsteady results of free-surface waves and hydrodynamic farces are shown and discussed. Particularly, the results of steady-state which are obtained as a special case of the present unsteady solution are compared with others' calculated and experimental results, and good agreements are observed.

  • PDF

Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method (경계면 포착법에 의한 밀도차이에 따른 물질경계면을 갖는 다상유동 수치해석)

  • Myon, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.443-453
    • /
    • 2009
  • The Rayleigh-Taylor instability, the bubble rising in both partially and fully filled containers and the droplet splash are simulated by an in-house solution code(PowerCFD), which are typical benchmark problems among multiphase flows with material interface due to density difference. The present method(code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows with material interface due to both density difference and instability.

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Numerical Simulation of Two-Dimensional Multiphase Flows due to Density Difference by Interface Capturing Method (경계면포착법에 의한 밀도차에 따른 다상유동 수치해석)

  • Myong, Hyon-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.572-575
    • /
    • 2008
  • Two-dimensional multiphase flows due to density difference such as the Rayleigh-Taylor instability problem and the droplet splash are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulates complex free surface flows such as multiphase flows due to density difference efficiently and accurately.

  • PDF

Application of a Non-Hydrostatic Pressure Model with Dynamic Boundary Condition to Free Surface Flow (동역학적 경계조건을 갖는 동수압 모형의 자유수면흐름에의 적용)

  • Lee, Jin-Woo;Jeong, Woo-Chang;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • In this study, a three-dimensional non-hydrostatic pressure model based on a normalized vertical coordinate system for free surface flows is presented. To strongly couple the free surface and non-hydrostatic pressure with the momentum equations, a double predictor-corrector method is employed. The study is especially focused on implementing the dynamic boundary condition (a zero pressure condition) at the free surface with ignoring of the atmospheric pressure. It is shown that the boundary condition can be specified easily with a slight modification to existing models.

Analysis of free surface motions in the hoot Pool of KALIMER (KALIMER 고온풀 자유액면 거동 해석)

  • Kim Seong-O;Eoh Jae-Hyuk;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.44-52
    • /
    • 2002
  • An analytic methodology was developed for free surface motions between liquid metal coolant and cover gas in order to calculate the phenomena of gas entrainment in hot pool surface through IHX EMP and reactor core. The methodology was setup by applying the first order VOF convection model to CFX4 general purpose fluid dynamics analysis code. The methodology was validated by applying it to an experimental apparatus designed for free surface motions of KALIMER reactor. The distributions of free surface calculated by the present methodology were almost coincident with the experimental data. The developed methodology was applied to the KALIMER reactor of full power operating condition. The shapes of the free surface were nearly uniform. From the results, it was found that the altitude of the free surface from the IHX inlet nozzle of KALIMER reactor is high enough not to affect to free surface motions of generating gas bubbles from the turbulent shear flows such as hydraulic jump and water falls.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.