• 제목/요약/키워드: Free-Surface Boundary Condition

검색결과 192건 처리시간 0.021초

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

다층고조를 갖는 원형 실린더에 의한 전자파 산란 : OSRC 방법 (Electromagnetic Wave Scattering from Multilayered Circular Cylinder : OSRC Approach)

  • 이화춘;이대형;최병하
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.38-44
    • /
    • 1995
  • The scattered electric field from a multilayered circular dielectric cylinder is caculated. Approximate boundary condition used in on-surface radiation boundary condition(OSRC) method has been applied to all the boundary surface of N-layered dielectric cylinder. It was assumed that scattered electric field at inner boundary surface in one region transmitted to the adjacent region at outer boundary surface. In the whole region, the unknown coefficients of electric field are acquired by the given incident electric field with ease. Electric field distribution at each boundary surface and the scattered electric field in free space are taken with the calculated unknown coefficients. the results obtainted were compared with those results that were used by regular surface boundary condition.

  • PDF

자유표면 아래의 타원형 실린더에 대한 비선형 운동 (Nonlinear Motion for an Elliptic Cylinder under Free Surface)

  • 이호영;임춘규
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.38-44
    • /
    • 2004
  • The motion response analysis of a submerged elliptic cylinder in waves is presented and the elliptic cylinder is a simplification of the section of submarine in this paper. The method is based on boundary integral method and two-dimensional 3 degree motions are calculated in regular harmonic waves. The fully nonlinear free surface boundary condition is assumed in an numerical domain and this solution is matched along an assumed boundary as a linear solution composed of transient Green function, The large amplitude motions of an elliptic cylinder are directly simulated and effects of wave frequency, wave amplitude and the distance from buoyancy center to gravity center are discussed.

Comparison of Potential and Viscous Codes for Water Entry Problem

  • Kwon, Sun-Hong;Park, Chang-Woo;Shin, Jae-Young
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.32-36
    • /
    • 2012
  • This paper presents a comparison of potential and viscous computational codes for the water entry problem. A po-tential code was developed which adopted the boundary element method to solve the problem. A nonlinear free surface boundary condition was integrated to find new locations of free surface. The dynamic boundary condition was simplified by taking constant potential values for every time steps. The simplified dynamic boundary condition was applied in the new position of the free surface not at the mean level, which is the usual practice for linearized theory. The commercial code FLUENT was used to solve the water entry problem from the viscosity point of view. The movement of the air-liquid interface is traced by distribution of the volume fraction of water in a computational cell. The pressure coefficients were compared with each other, while experimental results published by other researchers were also examined. The characteristics of each method were discussed to clarify merits and limitations when they were applied to the water entry problems.

면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석 (Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank)

  • 김문겸;임윤묵;조경환;정승원;어준
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

시간영역에서의 비선형 자유표면파문제에 대한 수치해석 (A time-domain analysis for a nonlinear free-surface problem)

  • 경조현;배광준;정상권;김도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동 (Flow behaviors of square jets surface discharged and submerged discharged into shallow water)

  • 김대근;김동옥
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

고효율 자유표면 경계조건에 의한 수중익 주위의 파도생성 (Wave Generation with a Hydrofoil by More Efficient Free-Surface Boundary Condition)

  • 곽승현
    • 한국항만학회지
    • /
    • 제12권1호
    • /
    • pp.87-93
    • /
    • 1998
  • 항만공학 분야의 해양파 문제에서 비선형이 강한 자유수면 문제를 수치적으로 해석하였다. 자유수면 격자를 유한차분법의 이산화 과정을 통해 재연한 것으로 자유표면 경계조건에 3차 미분항을 추가시켜 수치실험을 수행하였다. MAC 방법에 새로운 수치 기법을 도입하여 수면깊이 및 받음각에 따른 수치결과를 기존의 방법과 상호 비교하였다. 본 수치연구는, 점성유동장 계산에서 3차 풍상미분항이 자유표면파 생성에 효과가 크게 나타남을 보여 주었다.

  • PDF

2차원 자유표면파 문제에서의 방사조건 처리에 관한 고찰 (A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems)

  • 김용환
    • 대한조선학회논문집
    • /
    • 제29권3호
    • /
    • pp.80-89
    • /
    • 1992
  • 자유표면파 문제에서의 방사조건을 위해 두가지 기법을 적용하여 보았다. 우선, 가상감쇠의 개념을 적용하여 일정한 구간에서 파를 감쇠시킴으로써 열린경계면(open boundary)에서 반사파를 제거하는 방법을 적용하여 보았다. 또 다른 방법으로서는 Orlanski의 방법을 변형하여 적용함으로써 단방향 파동에 대한 방사조건 처리기법을 다루었다. 몇가지의 전형적인 자유표면파문제에 대해 이들 기법을 적용하여 그 유용성을 고찰하였는데, 이들 기법은 그 적용방법이 간단하고 비선형문제에서도 사용될 수 있을 것으로 사료된다. 문제의 해법으로 기본 쏘오스 분포법이 사용되었고 비선형의 자유표면 경계조건이 적용되었다.

  • PDF