• Title/Summary/Keyword: Free-Surface Boundary Condition

Search Result 192, Processing Time 0.026 seconds

An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems (2차원 자유표면파 문제에서의 국소 유한요소법의 응용)

  • Hyun-Kwon,Kil;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach (Arbitrary Lagrangian-Eulerian 기법에 의한 원통형 유체저장구조물 내부유체의 비선형 슬러싱 해석)

  • Kwon, Hyung-O;Cho, Kyung-Hwan;Kim, Moon-Kyum;Lim, Yun-Mook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.71-80
    • /
    • 2005
  • The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

Finite element analysis for the flow characteristics along the thickness direction in injection molding (사출성형시 두께방향으로의 유동특성에 관한 유한요소 해석)

  • 이호상;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1026-1035
    • /
    • 1987
  • The injection molding process is used in the fabrication of a large variety of plastic articles. A numerical simulation of the filling stage along the thickness direction is proposed by combining the free surface boundary condition with the relevant governing equations. The mathematical model is based on the equations of continuity, momentum and energy along with inelastic power-law model and relevant boundary conditions. Due to the significant implications for microstructure development in the pro duct, the fountain effect at the advancing free surface is explicitly taken into consideration in the simulation. The model yields data on free surface shape as well as velocity, pressure, temperature and shear stress distributions within the mold cavity. The rearrangement of the velocity and temperature profiles in the vicinity of the melt front is considered in detail.

Numerical Study on Characteristics of Ship Wave According to Shape of Waterway Section

  • Hong Chun-Beom;Lee Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2263-2269
    • /
    • 2005
  • The ship wave phenomena in the restricted waterway were investigated by a numerical analysis. The Euler and continuity equations were employed for the present study. The boundary fitted and moving grid system was adopted to enhance the computational efficiency. The convective terms in the governing equations and the kinematic free surface boundary condition were solved by the Constrained Interpolated Profile (CIP) algorithm in order to solve accurately wave heights in far field as well as near field. The advantage of the CIP method was verified by the comparison of the computed results by the CIP and the Maker and Cell (MAC) method. The free surface flow simulation around Wigley hull was performed and compared with the experiment for the sake of the validation of the numerical method. The present numerical scheme was applied to the free surface simulation for various canal sections in order to understand the effect of the sectional shape of waterways on the ship waves. The wave heights on the side wall and the shape of the wave patterns with their characteristics of flow are discussed.

Newton's Method to Determine Fourier Coefficients and Wave Properties for Deep Water Waves

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.49-57
    • /
    • 2023
  • Since Chappelear developed a Fourier approximation method, considerable research efforts have been made. On the other hand, Fourier approximations are unsuitable for deep water waves. The purpose of this study is to provide a Fourier approximation suitable even for deep water waves and a numerical method to determine the Fourier coefficients and the wave properties. In addition, the convergence of the solution was tested in terms of its order. This paper presents a velocity potential satisfying the Laplace equation and the bottom boundary condition (BBC) with a truncated Fourier series. Two wave profiles were derived by applying the potential to the kinematic free surface boundary condition (KFSBC) and the dynamic free surface boundary condition (DFSBC). A set of nonlinear equations was represented to determine the Fourier coefficients, which were derived so that the two profiles are identical at specified phases. The set of equations was solved using Newton's method. This study proved that there is a limit to the series order, i.e., the maximum series order is N=12, and that there is a height limitation of this method which is slightly lower than the Michell theory. The reason why the other Fourier approximations are not suitable for deep water waves is discussed.

Application of Convolutional Perfectly Matched Layer to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모사에의 CPML 경계조건 적용)

  • Cho, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-62
    • /
    • 2008
  • Finite difference method using not general SSG(standard staggered grid) but RSG(rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation but free surface boundary condition in finite difference method using RSG is easily solved with adding air layer. Recently PML(Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML(convolutional Perfectly Matched Layer) that is more efficient than that of PML was applied to FDM using RSG in this study. The results of CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method.

  • PDF

Study on the Third-Order-Upwind-Difference(TOUD) for the Free-Surface Simulation (자유표면시뮬레이션의 TOUD 연구)

  • KWAG SEUNG-HYUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.154-159
    • /
    • 2004
  • A new finite difference scheme is studied fur the simulation of free surface, surface the third derivative tenn for the wave elevation is artificially added in the the free-surface boundary condition. This study presents a comparative analysis with simulations performed by using the classical MAC method. More systematic computations are carried out by changing the submergence depth and angle of attack. Through the numerical simulation, it is found that a new numerical method becomes more efficient for the reason that the free surface elevation is reasonably developed at tire rear of trailing edge.

  • PDF

Fourier Series Expansion Method for Free Vibration Analysis of a Fully Liquid-Filled Circular Cylindrical Shell (Fourier 급수전개를 이용한 유체로 가득 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • An analytical method for linear free vibration of fully liquid-filled circular cylindrical shell with various boundary conditions is developed by the Fourier series expansion based on the Stokes' transformation. A set of modal displacement functions and their derivatives of a circular cylindrical shell is substituted into the Sanders' shell equations in order to explicitily represent the Fourier coefficients as functions of the end point displacements, forces, and moments. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in the axial directions. The unknown parameter of the velocity potential is selected to satisfy the boundary condition along the wetted shell surface. An explicit expression of the natural frequency equation can be obtained for any kind of classical boundary conditions. The natural frequencies of the liquid-filled cylindrical shells with the clamped-free, the clamped-clamped, and the simply supported-simply supported boundary conditions examined in the previous works, are obtained by the analytical method. The results are compared with the previous works, and excellent agreement is found for the natural frequencies of the shells.

  • PDF

Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.699-710
    • /
    • 2022
  • This work presents a comprehensive study on the surface energy effect on the axial frequency analyses of AFGM nanorods in cylindrical coordinates. The AFGM nanorods are considered to be thin, relatively thick, and thick. In thin nanorods, effects of the inertia of lateral motions and the shear stiffness are ignored; in relatively thick nanorods, only the first one is considered; and in thick nanorods, both of them are considered in the kinetic energy and the strain energy of the nanorod, respectively. The surface elasticity theory which includes three surface parameters called surface density, surface stress, and surface Lame constants, is implemented to consider the size effect. The power-law form is considered for variation of the material properties through the axial direction. Hamilton's principle is used to derive the governing equations and boundary conditions. Due to considering the surface stress, the governing equation and boundary condition become inhomogeneous. After homogenization of them using an appropriate change of variable, axial natural frequencies are calculated implementing harmonic differential quadrature (HDQ) method. Comprehensive results including effects of geometric parameters and various material properties are presented for a wide range of boundary condition types. It is believed that this study is a comprehensive one that can help posterities for design and manufacturing of nano-electro-mechanical systems.