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ABSTRACT: Since Chappelear developed a Fourier approximation method, considerable research efforts have been made. On the other hand, 

Fourier approximations are unsuitable for deep water waves. The purpose of this study is to provide a Fourier approximation suitable even for deep 

water waves and a numerical method to determine the Fourier coefficients and the wave properties. In addition, the convergence of the solution was 

tested in terms of its order. This paper presents a velocity potential satisfying the Laplace equation and the bottom boundary condition (BBC) with a 

truncated Fourier series. Two wave profiles were derived by applying the potential to the kinematic free surface boundary condition (KFSBC) and the 

dynamic free surface boundary condition (DFSBC). A set of nonlinear equations was represented to determine the Fourier coefficients, which were 

derived so that the two profiles are identical at specified phases. The set of equations was solved using Newton’s method. This study proved that there 

is a limit to the series order, i.e., the maximum series order is N=12, and that there is a height limitation of this method which is slightly lower than the 

Michell theory. The reason why the other Fourier approximations are not suitable for deep water waves is discussed.  

  

 

1. Introduction 
 

The undulations on the water surface adopt inherently beautiful 

forms, such as the smooth regular features of progressive waves. On 

the other hand, despite the innate curiosity concerning water wave 

motion, it was only in the 19th century by Airy that efforts to provide 

a mathematical description of wave motion began in earnest (Henry, 

2008). Since the early development of the theory describing the 

waves using the perturbation method by Stokes (1847), many 

nonlinear solutions were obtained, both analytically and numerically.  

Based on the use of truncated Fourier expansions for flow field 

quantities, Chappelear (1961) and Dean (1965) developed a ‘Fourier 

approximation’ (Tao et al., 2007). By choosing the expansions to 

satisfy the Laplace equation and the BBC, the problem was reduced 

to solving a set of nonlinear equations for each of the Fourier 

coefficients, and the wave properties (Tao et al., 2007). As the set of 

nonlinear equations is derived from the finite series, the expansions 

were represented by truncated Fourier expansions, which is why they 

are coined as Fourier approximations. Considerable research 

(Chappelear, 1961; Dean, 1965; Chaplin, 1979; Rienecker and 

Fenton, 1981; Fenton, 1988) has been conducted on this approach.  

The steam function theory was developed by Dean (1965). Dean 

(1965) proposed the use of the root mean square errors (RMSE) in the 

dynamic free surface boundary condition (DFSBC) and the kinematic 

free surface boundary condition (KFSBC) as an error evaluation 

criterion for wave theories. Dean (1965) also defined the Lagrangian 

function by introducing the linear summation of the two errors on the 

free surface with a Lagrange multiplier. Fourier coefficients were 

determined to minimize the Lagrangian function. The required order (N) 

of the stream function theory is determined by the wave steepness and 

shallow water parameter. For N = 1, the stream function theory reduces 

to the Airy wave theory. As the breaking wave height is approached, 

more terms are required to accurately represent the wave. Det Norske 

Veritas (DNV, 2010) described that stream function wave theory has an 

error of more than 1% in deep water waves whose height is over 90% 

of the breaking limit even though the required order is increased (See 

Figs. 3–4 in DNV (2010)). Chaplin (1979) applied the Schmidt 

orthogonalization process as an alternative to Dean’s method and 

obtained improved results (Tao et al., 2007). 

Rienecker and Fenton (1981) also adopted the stream function 

introduced by Dean (1965). The unknown constants were calculated 

directly with Newton’s method in Rienecker and Fenton (1981). 

Therefore, the method required partial derivatives with regard to 

unknown constants, which complicated the numerical formulation of 

Newton’s method. Fenton (1988) obtained all the partial derivatives for 

simplification of this method numerically. Because the reference depth 

parameter is simultaneously determined with the Fourier coefficients, 

the required order should be increased to reduce the numerical error in 

the water depth condition. Newton’s method is unstable because the 

number of unknown coefficients increases when the required order 
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increases. Therefore, the Newton method requires an initial solution 

closer to the exact solution. To solve it, in common with other versions 

of the Fourier approximation, it is sometimes necessary to solve a 

sequence of lower waves, extrapolating forward in height steps until the 

desired height is reached (Fenton, 1988). This problem can be avoided 

using the sequence of height steps (Fenton, 1990). As Rienecker and 

Fenton (1981) pointed out, several aspects of Fourier approximations 

beyond just the truncation of the series inhibited its widespread use 

(Tao et al., 2007). Neither of the above stream function approaches can 

be applied to waves in deep water because the stream function 

expansions contain hyperbolic functions (Fenton, 1988). 

Shin (2016) reported that most numerical errors resulted from 

denominators in the stream function, the numerical integration of the 

water depth condition, and problems involved in Newton’s method. Shin 

(2016) solved the problems by separately calculating the water depth 

condition and introducing deep water velocity potential without 

denominators and a dimensionless coordinate system. The flow field was 

represented with a velocity potential to satisfy the Laplace equation and 

the bottom boundary condition (BBC). Two wave profiles were 

calculated by applying the velocity potential to the KFSBC and the 

DFSBC. The potential contains N+2 unknown constants, which are N 

Fourier coefficients, the wave steepness, and the reference depth 

parameter, while the stream function contains 2N+6 unknown constants 

(Rienecker and Fenton, 1981; Fenton, 1988). The wavelength and the 

reference depth parameter are not coupled to the Fourier coefficients 

because the dimensionless coordinate system was defined with the phase 

and the dimensionless elevation. Therefore, the wavelength and the 

reference depth parameter were determined independently. As a result, 

the required order was reduced in Shin (2016) and Shin (2021).  

All the above-mentioned advantages resulted from the dimensionless 

coordinate system (Refer to Figs. 1 and 2). In addition to the advantages, 

there are some advantages to the coordinate system in Fig. 2. The 

independent variable is the relative horizontal position with regard to the 

wavelength in the moving coordinate system (Rienecker and Fenton, 

1981; Fenton, 1988). The horizontal positions are also unknown values in 

Fenton’s method because the wavelength is an unknown constant, which 

makes the numerical procedure much more complicated. On the other 

hand, the independent variable is the phase in the range [0, π] in Shin 

(2016), which is a known value. In addition, partial derivatives with 

regard to the wavelength are unnecessary, unlike Fenton’s method 

(Rienecker and Fenton, 1981; Fenton, 1988). All the partial derivatives 

necessary can be calculated with tensor analysis, while they are calculated 

numerically in Fenton’s method. Therefore, there are no errors in the 

partial derivatives, unlike Fenton’s method. The numerical formulation of 

Newton’s method was also represented by tensor analysis. 

Some waves near the breaking limit were calculated for verification, 

and their errors were checked with Dean’s criteria. The deep water 

breaking limit was checked. According to the required order, the trend 

of numerical error was checked. There is a limit to the series order, i.e., 

N ≤ 12. This is why the other approximations are unsuitable for deep 

water waves. 

 

2. Complete Solution 
 

The complete solution was presented by Shin (2016), and the results 

are summarized in this chapter. Two coordinate systems were adopted to 

describe a progressive water wave. One is the conventional coordinate  

 
Fig. 1 Conventional coordinate system for a progressive wave (𝐻: 

wave height, 𝑇 : wave period, 𝐿 : wavelength, 휂(𝑡, 𝑥) : free 

surface elevation from the still water line (SWL)). 
 

 
Fig. 2 Dimensionless coordinate system for a progressive wave. 

 

system (𝑡, 𝑥, 𝑦) shown in Fig. 1. The origin is located on the still water 

line. The x-axis is in the direction of the wave propagation, the y-axis 

points upwards, and 𝑡 is time. The fluid domain is bounded by the free 

surface y = 휂(𝑡, 𝑥).  

The other coordinate system (𝛽, 𝛼) is the dimensionless stationary 

frame shown in Fig. 2. The origin is located at the point under the crest 

on the reference line, which is the horizontal line passing through two 

points at 휂𝑜 = 휂(±90°) on the free surface. Therefore, the wave profile 

is a fixed, periodic, and even function in the system. The horizontal axis 

is the phase, 𝛽 = 𝑘𝑥 − 𝜔𝑡, whose domain is −𝜋 ≤ 𝛽 ≤ 𝜋, where 𝑘 is the 

wave number defined by 𝑘 ≝ 2𝜋/𝐿  and 𝜔  is the angular frequency 

defined by 𝜔 ≝ 2𝜋/𝑇. The vertical axis is the dimensionless elevation 

from the reference line, 𝛼 = 𝑘(𝑦 − 휂0) in α ≤ ζ, where 휁 = 𝑘(휂 − 휂0) is 

the dimensionless free surface elevation from the reference line. 

The velocity potential in finite depth is represented in Shin (2019). 

The hyperbolic functions in the denominator are divergent as the water 

depth increases. Therefore, the potential is represented by the original 

deep water form without the hyperbolic functions.  

𝜙 =
𝜔

𝑘2
∑𝑎𝑛e

𝑛𝛼 sin 𝑛𝛽

𝑁

𝑛=1

 (1) 

 

where 𝑎𝑛  is a Fourier coefficient, which is dimensionless. The 

horizontal water-particle velocity is 
 

𝑢(𝛽, 𝛼) = 𝑐∑𝑛𝑎𝑛e
𝑛𝛼 cos 𝑛𝛽

𝑁

𝑛=1

 (2) 

 

where 𝑐 = 𝜔/𝑘 is the wave celerity. The vertical water-particle velocity 

is 

𝑡, 𝑥SWL

𝑦

 

𝑇 2 𝐿 2 or

𝑇   𝐿   or

휂(𝑡, 𝑥)𝐻

−휂0

SWL

𝛼

 

𝜋 2 

휁(𝛽)
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𝜋
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𝑣(𝛽, 𝛼) = 𝑐∑𝑛𝑎𝑛e
𝑛𝛼 sin 𝑛𝛽

𝑁

𝑛=1

 (3) 

 

lim
𝛼→−∞

𝑣 = 0, which is the BBC. The water-particle accelerations in the 

horizontal direction and the vertical direction are represented as follows: 

 

𝜕𝑢

𝜕𝑡
=
𝜔2

𝑘
∑𝑛2𝑎𝑛e

𝑛𝛼  sin 𝑛𝛽

𝑁

𝑛=1

 (4) 

  

𝜕𝑣

𝜕𝑡
= −

𝜔2

𝑘
∑𝑛2𝑎𝑛e

𝑛𝛼 cos 𝑛𝛽

𝑁

𝑛=1

 (5) 

 

The KFSBC is presented by an ordinary differential equation in the 

coordinate system. Solving the differential equation, the wave profile 

was calculated as follows (Refer to Appendix A): 

 

ζ = ∑𝑎𝑛 {𝑒
𝑛𝜁 cos 𝑛𝛽 − cos

𝑛𝜋

2
}

𝑁

𝑛=1

 (6) 

 

The integral constant was determined by the definition of the 

reference line, i.e., 휁(±𝜋/2) = 0. Eq. (6) contains only N coefficients, 

while Rienecker et al. (1981) contains N+5 unknown constants, which 

are N+1 coefficients, the wave number, celerity, volume rate, and 

Bernoulli’s constant. Compared to Rienecker et al. (1981), Eq. (6) is 

simple. Unknown constants are reduced dramatically by introducing the 

coordinate system in Fig. 2. Bernoulli’s equation is represented in the 

dimensionless coordinate system as follows: 

 
𝑝(𝛽, 𝛼)

𝜌𝑐2
= 𝑈(𝛽, 𝛼) − 𝑈0 −

1

2
{𝑈2(𝛽, 𝛼) + 𝑉2(𝛽, 𝛼)}

+
1

2
(𝑈0

2 + 𝑉0
2) −

 𝛼

휃
 

(7) 

 

where 𝜌 is the water density, and 𝑈 and 𝑉 are dimensionless horizontal 

and vertical velocities defined by 𝑈 ≝ 𝑢/𝑐  and 𝑉 ≝ 𝑣/𝑐 . Bernoulli’s 

constant is eliminated by the definition of the reference line, i.e., 

𝑝(±π/2, 0) = 0. 𝑈0 = 𝑈(±𝜋/2,0) and 𝑉0 = 𝑉(±𝜋/2,0) are velocities at 

the phase of 𝛽 = ±𝜋/2 on the free surface. The linear steepness is 

defined with 휃 ≝ (𝜔2𝐻)/𝑔 where 𝑔 is gravity and 𝐻 is the wave height. 

The linear steepness is a constant for a particular wave. The other wave 

profile is calculated by applying the DFSBC (𝑝(𝛽, 휁) = 0) to Eq. (7), as 

follows: 

 
휁 

θ
 = 𝑈(𝛽, 휁) − 𝑈0 −

1

2
{𝑈2(𝛽, 휁) + 𝑉2(𝛽, 휁)} +

1

2
(𝑈0

2 + 𝑉0
2) (8) 

 

Eq. (8) contains only N coefficients and wave steepness. In addition, 

Eq. (8) also satisfies that ζ(±π/2) = 0. Dimensionless wave height 

(steepness) is defined by  ≝ 𝑘𝐻 , which provides the dispersion 

relation because the wave number is calculated as 𝑘 =  /𝐻 . The 

reference line is determined by the water depth condition presented as 

follows: 

 

𝑘휂0 = −
1

2𝜋
∫ 휁𝑑𝛽

𝜋

−𝜋 

 (9) 

 

The steepness is determined by the wave height condition presented 

as follows: 

 = 휁(0) − 휁(𝜋) (10) 

 

For 𝑁 → ∞ , Eqs. (1)–(10) provide the complete solution to 

irrotational deep water waves. The solution contains N+2 unknown 

constants, i.e., the Fourier coefficient, 𝑎n , wave steepness,  , and 

reference depth parameter, 𝑘휂0.  

This study aims to present a method to numerically determine the 

constants. N+2 equations are necessary to determine the unknown 

constants. The two profiles in Eqs. (6) and (8) should be identical for all 

phases. Hence, a set of N equations are obtained so that Eqs. (6) and (8) 

are equal at N phases. In addition, there are two equations, i.e., Eqs. (9) 

and (10). As a result, there are N+2 equations to determine the 

unknown constants.  

An example for N = 1 and for N = 2 is presented in Appendix B and 

C, and Shin (2016) and Shin (2021) presented an example for N = 3. 

This method is further simplified and generalized by tensor analysis in 

the next chapter. 

 

3. The Fourier Coefficients and the Steepness 
 

A method to determine the Fourier coefficients and the steepness is 

presented for an arbitrary number of N.  

In the other Fourier approximations (Rienecker and Fenton (1981), 

Fenton (1988)), the profile, 휂  is directly calculated instead of ζ . 

Therefore, Eq. (9) must be simultaneously calculated with the 

coefficients. In this study, however, the profile 휂 was calculated with ζ. 

Therefore, Eq. (9) was not coupled with the coefficients in this study 

and was calculated after they were determined. Hence, Eq. (9) is not 

considered in this chapter.  

When the wave profile, 휁 is prescribed in advance, it is possible to 

convert Eq. (6) to a set of linear equations to determine the coefficients. 

Because the wave profile is an even function, the phases β𝑚 for 𝑚 =

1,2, … , 𝑁  are considered in the range, 0 ≤ 𝛽𝑚 ≤ 𝜋  and 𝛽𝑚 ≠ 𝜋/2 

because Eqs. (6) and (8) already satisfy that ζ(±π/2) = 0. β1 = 0 and 

β𝑁 = 𝜋. Letting 𝑋𝑚 = 휁(𝛽𝑚), Eq. (6) is represented at the phase β𝑚 as 

follows: 

 

𝐾𝑚𝑛𝑎𝑛 = 𝑋𝑚 (11) 

 

The summation convention is considered in Eq. (11). The repeated 

subscript “n” is a dummy subscript. 𝐾𝑚𝑛 is a second-order tensor, 𝑎𝑛 

and 𝑋𝑚  are vectors in N-dimensional space. The component of the 

tensor 𝐾𝑚𝑛 is presented as follows: 

 

𝐾𝑚𝑛 = 𝑒𝑛𝑋𝑚 cos(𝑛𝛽𝑚) − cos (
𝑛𝜋

2
) (12) 

 

Using the inverse tensor 𝑅𝑚𝑛 of the tensor 𝐾𝑚𝑛, the solution to Eq. 

(11) is determined easily as follows: 

 

𝑎𝑛 = 𝑅𝑛𝑚𝑋𝑚 (13) 

 

Using Eq. (8), the error vector 𝐸𝑚 in the DFSBC is defined as 

 

𝐸𝑚 = −
𝑋𝑚 

θ
+ 𝑈𝑚𝑛𝑎𝑛  −

1

2
ε𝑚𝑝𝑞𝑈𝑝𝑛𝑎𝑛 𝑈𝑞𝑗𝑎𝑗

−
1

2
ε𝑚𝑝𝑞𝑉𝑝𝑛𝑎𝑛 �̅�𝑞𝑗𝑎𝑗 

(14) 

 

where  = 𝑋1 − 𝑋𝑁  from the wave height condition in Eq. (10). 
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Therefore, the wave height condition is automatically integrated in Eq. 

(14). The components of the second-order tensors in Eq. (14) are 

represented as follows: 

 

𝑈𝑚𝑛 = 𝑛 {e𝑛𝑋𝑚 cos(𝑛𝛽𝑚) − cos (
𝑛𝜋

2
)} (15) 

 

𝑈𝑚𝑛 = 𝑛 {e𝑛𝑋𝑚 cos(𝑛𝛽𝑚) + cos (
𝑛𝜋

2
)} (16) 

 

𝑉𝑚𝑛 = 𝑛 {e𝑛𝑋𝑚 sin(𝑛𝛽𝑚) − sin (
𝑛𝜋

2
)} (17) 

 

�̅�𝑚𝑛 = 𝑛 {e𝑛𝑋𝑚 sin(𝑛𝛽𝑚) + sin (
𝑛𝜋

2
)} (18) 

 

The third-order tensor 휀𝑖𝑗𝑝 is defined as follows: 

 

ε𝑝𝑞𝑟 = {
1  for 𝑝 = q = r

0  for the other case
 (19) 

 

A set of N nonlinear equations represented by 𝐸𝑚 = 0 for 𝑋𝑚  are 

obtained by substituting Eq. (13) into Eq. (14). The set of equations is 

solved with Newton’s method. A set of linear equations can be derived 

by denoting partial derivatives of a tensor using commas and indices as 
∂( )

∂Xi
= ( ),𝑖  and applying Newton’s method to Eq. (14). 

 

𝐸𝑚,𝑖𝛥Xi = −𝐸𝑚  (20) 

 

Because 𝛥𝑋𝑖
[𝑟]

= 𝑋𝑖
[𝑟+1]

− 𝑋𝑖
[𝑟]

, the solution in the next step is 

 

𝑋𝑖
[𝑟+1]

= 𝑋𝑖
[𝑟]

+ 𝛥𝑋𝑖
[𝑟]

 (21) 

 

The superscript [𝑟] with [ ] means the step of Newton’s method. All 

the steps are rth in all equations except Eq. (21) in this chapter. 

Therefore, for the simplification of equations, the superscript [𝑟] was 

omitted in all the equations except Eq. (21). Differentiating Eq. (14) 

with respect to 𝑋𝑖, the partial derivative 𝐸𝑚,𝑖 of the error vector is 

 

𝐸𝑚,𝑖 = −
𝛿𝑚𝑖 

휃
−
𝑋𝑚 ,𝑖 

휃
+ 𝑈𝑚𝑛,𝑖𝑎𝑛 + 𝑈𝑚𝑛𝑎𝑛,𝑖 

−
1

2
휀𝑚𝑝𝑞𝑈𝑝𝑛,𝑖𝑎𝑛 �̅�𝑞𝑗𝑎𝑗 −

1

2
휀𝑚𝑝𝑞𝑈𝑝𝑛𝑎𝑛,𝑖 𝑈𝑞𝑗𝑎𝑗 

−
1

2
휀𝑚𝑝𝑞𝑈𝑝𝑛𝑎𝑛 �̅�𝑞𝑗,𝑖𝑎𝑗 −

1

2
휀𝑚𝑝𝑞𝑈𝑝𝑛𝑎𝑛 𝑈𝑞𝑗𝑎𝑗,𝑖 

−
1

2
휀𝑚𝑝𝑞𝑉𝑝𝑛,𝑖𝑎𝑛 �̅�𝑞𝑗𝑎𝑗 −

1

2
휀𝑚𝑝𝑞𝑉𝑝𝑛𝑎𝑛,𝑖 �̅�𝑞𝑗𝑎𝑗 

−
1

2
휀𝑚𝑝𝑞𝑉𝑝𝑛𝑎𝑛 �̅�𝑞𝑗,𝑖𝑎𝑗 −

1

2
휀𝑚𝑝𝑞𝑉𝑝𝑛𝑎𝑛 �̅�𝑞𝑗𝑎𝑗,𝑖 

(22) 

 

Differentiating Eqs. (15)–(18) with respect to 𝑋𝑖, the components of 

the third-order tensors are 

 

𝑈𝑚𝑛,𝑞 = 𝑈𝑚𝑛,𝑞 = 𝑛2𝛿𝑚𝑞e
𝑛𝑋𝑚 cos(𝑛𝛽𝑚) (23) 

 

𝑉𝑚𝑛,𝑞 = �̅�𝑚𝑛,𝑞 = 𝑛2𝛿𝑚𝑞e
𝑛𝑋𝑚 sin(𝑛𝛽𝑚) (24) 

 

Because  = 𝑋1 − 𝑋𝑁,  

 

 ,𝑖 = {
1  for 𝑖 = 1

0  for 𝑖 ≠ 1 or 𝑁
−1 for 𝑖 = 𝑁

} 
(25) 

 

Differentiating Eq. (11) with respect to 𝑋𝑝, we have 

 

𝐾𝑚𝑛,𝑝𝑎𝑛 + 𝐾𝑚𝑛𝑎𝑛,𝑝 = 𝛿𝑚𝑝 (26) 

 

where 𝑋𝑚,𝑝 = 𝛿𝑚𝑝  and 𝛿𝑚𝑝  is the second-order isotropic tensor. 

Multiplying Eq. (26) by the tensor 𝑅𝑖𝑚 , the partial derivative of the 

coefficient is easily determined as follows: 

 

𝑎𝑖,𝑝 = 𝑅𝑖𝑝 − 𝑅𝑖𝑚𝐾𝑚𝑛,𝑝𝑎𝑛 (27) 

 

where 𝑅𝑖𝑚𝐾𝑚𝑛 = 𝛿𝑖𝑛  and 𝛿𝑖𝑛𝑎𝑛,𝑝 = 𝑎𝑖,𝑝.  Differentiating Eq. (12) with 

respect to 𝑋𝑝,  

 

𝐾𝑚𝑛,𝑝 = 𝛿𝑚𝑝𝑛e
𝑛𝑋𝑚 cos 𝑛𝛽𝑚 (28) 

 

Therefore, all the partial derivatives necessary were easily obtained 

without errors, unlike Fenton (1988).  

Representing an individual component of a tensor as shown in Eqs. 

(12), (15)–(18), (23)–(24), and (28), the summation convention was not 

considered. As a criterion of convergence, the Root Mean Square Error 

in the DFSBC proposed by Dean (1965) was adopted. Dividing the 

inner product of the error vector 𝐸𝑚 by N, the RMSE in the DFSBC 

(Dean, 1965) is defined as follows: 

 

RMSE =
√𝐸𝑚𝐸𝑚

𝑁
× 100 % (29) 

 

Newton’s method was rapidly convergent to the complete solutions 

(whose RMSE ≤ 10−13% within three steps) when the result of Shin 

(2021) was used as the first step solution. There are some differences in 

the above approach compared to Fenton’s method (Rienecker et al., 

1981; Fenton, 1988).  

 

• Eq. (11) is linear and decoupled from Eq. (20). 

• All the partial derivatives with respect to wavelength are not 

required.  

• All equations can be formulated with tensor analysis.   

• 𝑋𝑖 are merely parameters for calculating the coefficients and the 

steepness in this study. After determining the coefficients, 𝑋𝑖 are 

no longer used. Hence, the wave elevation is denoted with 𝑋𝑖 

instead of 휁𝑖 in Eqs. (11)–(28).  

• After determining the coefficients and the steepness, the wave 

profile and water depth condition were calculated separately, as 

presented in the next chapter. 

 

4. Wave Profile and Reference Depth Parameter 

 

The Fourier coefficients and the steepness were determined in 

advance. Therefore, the wave profile can be calculated with Eq. (6) as 

follows: Eq. (6) is represented as 

 

𝐹(𝛽, 휁) = −ζ +∑𝑎𝑛 {𝑒
𝑛𝜁 cos 𝑛𝛽 − cos

𝑛𝜋

2
}

𝑁

𝑛=1

 (30) 

 

where 𝐹(𝛽, 휁) = 0 . The power series of 𝐹(𝛽, 휁)  is represented as 

follows: 
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𝐹(𝛽, 휁) = ∑
𝐹(𝑞)(𝛽, 0)

𝑞!
휁𝑞

∞

𝑞=0

 (31) 

 

where 𝐹(𝑞) =
∂𝑞F

𝜕𝜁𝑞
. Because 𝐹(𝛽, 휁) = 0, Eq. (31) provides a polynomial 

equation with regard to ζ. For 𝑞 = 1, Eq. (31) provides a linear equation. 

Eq. (31) provides a quadratic equation for 𝑞 = 2, and Eq. (31) provides 

a cubic equation for 𝑞 = 3. The equations provide good approximations 

to the wave profile because |휁| < 1 for all cases. For q=2, the following 

approximation is obtained: 

 

ζ[1] =
−𝐹(1)(𝛽, 0) − √{𝐹(1)(𝛽, 0)}2 − 2𝐹(𝛽, 0)𝐹(2)(𝛽, 0)

𝐹(2)(𝛽, 0)
 (32) 

 

The other root is a trivial solution because it does not satisfy that 

|휁| < 1. The approximation is used as the first step in the Newton’s 

method defined as follows. The superscript [n] means the n’th step of 

Newton’s method (where n is a natural number), while the superscript 

(n) means the n’th order partial derivative with respect to ζ. The wave 

profile is calculated as follows by applying Newton’s method: 

 
휁 = lim

𝑚→∞
휁[𝑚+1] (33) 

 

where  

 

ζ[𝑚+1] = ζ[𝑚] −
𝐹(𝛽, ζ[𝑚])

𝐹′(𝛽, ζ[𝑚])
 (34) 

 

|𝐹′(𝛽, 휁)| ≥ |𝐹′(0, 휁𝑐)|  for all waves and |𝐹′(0, 휁𝑐)| = 0  is the 

breaking condition proposed by Stokes (Chakrabarti, 1987). Therefore, 

Eq. (34) is valid for all waves except breaking waves. The Newton 

method rapidly converges to the complete solution. The wave 

elevations ζi = 휁(𝛽𝑖) were calculated using Eq. (33). Note that ζi stands 

for the free surface elevation at phase 𝛽𝑖. The integral is numerically 

calculated by substituting the results in water depth conditions as 

follows: 

 

𝑘휂0 = −
1

2𝑀
 ∑(ζi + ζ𝑖+1)

𝑀

𝑖=1

 
(35) 

 

Because 휁 is an even function, 𝛽1 = 0, 𝛽𝑖 = (𝑖 − 1)𝜋/𝑀 and 𝛽𝑀+1 =

𝜋. Note that M is independent of 𝑁. When M is increased, Eq. (35) can 

be calculated more accurately rather than Rienecker et al. (1981) and 

Fenton (1988). 

 

5. Numerical Analysis Procedure 
 

Fig. 3 presents a flow chart of the procedure. The chart comprises 

two DO-loops because the Fourier coefficients and wave profile are 

independently calculated. The first step, 𝑋𝑚
[1]

, was calculated using the 

result in Shin (2021). The first DO-loop calculates the coefficients and 

the steepness. The coefficients, 𝑎𝑛
[𝑟]

 are calculated by Eq. (13). 

Substituting, 𝑎𝑛
[𝑟]

 into Eq. (20), Δ𝑋𝑖
[𝑟]

 are calculated by Eq. (20) and then 

𝑋𝑖
[𝑟+1]

 are calculated by Eq. (21). The RMSE is calculated with Eq. (29). 

If the RMSE is greater than the tolerance (1 × 10−13%), 𝑋𝑖
[𝑟]

 is replaced 

with 𝑋𝑖
[𝑟+1]

. The DO-loop continues until Newton’s method converges 

to the complete solution within the tolerance.  

Fig. 3 Flow chart for numerical analysis. 

 

In this DO-loop, the Fourier coefficients and the steepness are 

determined. The wave number is calculated as follows: 

 

𝑘 =
 

𝐻
 (36) 

 

The second DO-loop is used to calculate the free surface elevations at 

more phases than the phases considered in the first DO-loop. The 

elevations, ζi
[𝑚+1]

 are calculated using Newton’s method in Eq. (34). 

The DO-loop continues until Newton’s method converges to the 

complete solution within the tolerance ( |𝐹(𝛽𝑖 , 휁𝑖)| ≤ 1 × 10−17) . 

Substituting ζi  into Eq. (35), the reference depth parameter 𝑘휂𝑜  was 

calculated. With the results, the wave profile was calculated as follows: 

 

휂𝑖 =
휁𝑖 + 𝑘휂0

𝑘
 (37) 

 

The water particle velocities were calculated by substituting the 

Fourier coefficients into Eqs. (2)–(3), and the accelerations were 

calculated by substituting the Fourier coefficients into Eqs. (4)–(5). The 

pressure field was calculated by substituting the Fourier coefficients 

into Eq. (7). The other wave profile was calculated by substituting the 

results into the right side of Eq. (8). The error in DFSBC can be 

checked by comparing the two profiles.  

NO Replace 𝑋𝑖
[𝑟]

 

with 𝑋𝑖
[𝑟+1] 

YES 

Replace 휁𝑝
[𝑚]

 with 

휁𝑝
[𝑚+1]

 in Eq. (21) 

NO 

Outputs: 𝑎𝑛, S, 𝑘휂0 and 휂 

Calculate 𝑋𝑚
[1]

  

Calculate 𝑎𝑛
[𝑟]

 with Eq. (13) 

Check RMSE ≤ 𝑇 𝑙 in Eq. (29) 

Calculate wave profile 휁𝑖
[𝑚+1]

 with Eq. (34) 

Calculate reference depth 𝑘휂0 with Eq. (35)  

Calculate 𝑋𝑖
[𝑟+1]

 with Eqs. (20)–(21) 

Check |𝐹𝑖| ≤ 𝑇 𝑙 with Eq. (30) 

Inputs: H, T 

Calculate wave steepness  = 𝑋1 − 𝑋𝑁 

Calculate wave number with Eq. (36) 

Calculate wave profile 휂𝑖 =
𝜁𝑖+𝑘𝜂0

𝑘
 with Eq. (37) 

Calculate wave profile 휁𝑖
[1]

 with Eq. (32) 

YES 
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6. Results  
 

The Fourier coefficients, 𝑎𝑛, the steepness,  , and the reference depth 

parameter, η0 are functions of one variable whose independent variable 

is the linear steepness, 휃 . Consequently, Shin (2019) numerically 

calculated some data for the coefficients, steepness, and reference depth 

parameters in the range, 0 < 휃 < 1 . By curve fitting the data, the 

Fourier coefficients, steepness, and reference depth parameter are 

represented by Newton’s polynomials in Shin (2021), which give 

closed-form solutions. In this calculation, N = 3 was considered. The 

results satisfied the Laplace equation, the BBC, and the KFSBC. The 

RMSE in the DFSBC was less than 1% in the range, 𝐻/𝐿𝑜 ≤ 0.1 2 

where 𝐿𝑜 is the linear wavelength defined as follows: 

 

𝐿𝑜 =
2𝜋𝑔

𝜔2
 (38) 

 

Because 휃 = 2π𝐻/𝐿𝑜, 𝐻/𝐿𝑜 = 0.1 2 corresponds to 휃 = 0.892. As a 

result, Shin (2016, 2021) reported a good approximation whose error 

was less than 1% in the range, 0 ≤ 휃 ≤ 0.892. Although the error 

increases, Shin (2021) still applies to the waves in the range, 0.892 ≤

휃 < 0.999. When 휃 > 0.999, wave profile by Shin (2021) does not 

converge. Each researcher has a different criterion regarding deep water 

breaking limitations. Chakarabarti (1987) proposes 𝐻/𝐿𝑜 = 0.1 2 . 

According to Dean and Dalrymple, (1984), Michell theory is 𝐻/𝐿𝑜 =

0.17, which corresponds to 𝐻/𝐿 = 0.1 2. According to Stokes, the 

breaking criterion is u = c at the crest. In this study, the limitation was 

checked and the errors according to the required order were also 

checked. It is also discussed why the other Fourier approximations are 

unsuitable for deep water waves. For the verification, three waves with 

a period of 6 s are considered, which were tabulated in Table 1. The 

following series order was considered: N = 1; N = 3, 6, 10, 12, 13, and 

35; M = 180. The RMSE in the DFSBC was calculated and tabulated in 

Tables 2 and 3. As the required order is increased, the error is decreased. 

When 𝑁 ≥ 13, Newton’s method in Ch. 3 did not converge because 

e𝑁𝜁  is very large and 𝑎𝑁  is very small. As a result, this study is 

available for 𝑁 ≤ 12.  

Eq. (35) was coupled with the other equations to calculate the Fourier 

coefficients, 𝑁 = 𝑀  and Eq. (35) is calculated with 𝑘휂0 =

−
1

2N
 ∑ (𝑋i + 𝑋𝑖+1)

𝑁
𝑖=1  in Fentons’ method. Therefore, the required order 

should be increased in Fenton’s method. Because most errors of 

Fenton’s method resulted from the numerical integration of the water 

depth condition, M should be increased to reduce it. Fenton’s method, 

M = N = 64, is greater than N=13. Therefore, Fenton’s method is 

unsuitable for deep water waves.  

The wave height to wavelength ratio was calculated, as listed in 

Table 4. The wavelengths were similar to the 5th-order Stokes wave. 

When 휃 > 1.028 , this study does not converge. More precisely, 

Newton’s method does not converge because the wave profile at the 

crest is sharp when 휃 > 1.028. Therefore, 휃 = 1.028 is the limitation 

of this study, which corresponds 𝐻/𝐿 = 0.137 and is slightly less than 

0.142 according to Dean et al., (1984).  

The convergent speed decreased when the required order increased. 

For 휃 ≤ 0.892, Shin (2021) is acceptable as the first step solution in 

Newton’s method. For 휃 > 0.892, the method reported by Shin (2021) 

is unsuitable for the first step solution because the Newton method does 

not converge. This problem can be avoided using the sequence of 

height steps. For waves in the range 0.892 < 휃 ≤ 0.999, the profile 

for 휃 = 0.892 is used as the first step solution, and for waves in the 

range  0.999 < 휃 ≤ 1.028, the profile for 휃 = 0.999 is used as the 

first step solution. The profiles are shown in Fig. 4; the horizontal 

velocities are shown in Fig. 5; the vertical velocities are shown in Fig. 6. 

The relative horizontal velocity at the crest is 0.782 for wave (c), which 

is less than Stokes’ criteria, 1. The Bernoulli’s constant in Fig. 4 is 

calculated for wave (c). 
 

Table 1 Test waves with period T = 6 s 

 Wave (a) Wave (b) Wave (c) 

휃 0.892 0.999 1.028 

H (m) 7.980 8.937 9.196 

𝐻/𝐿𝑜 0.142 0.159 0.164 

 

Table 2 RMSE (%) 

Theories 휃 = 0.892 휃 = 0.999 휃 = 1.028 

5th Stokes 2.492 3.950 4.459 

N = 1 1.758 2.226 2.360 

Shin (2021) 8.26E-2 1.13 Not applicable 

N = 6 1.08E-2 9.38E-2 2.15E-1 

N = 10 2.78E-4 8.21E-3 2.94E-2 

N = 12 6.05E-5 4.85E-3 2.04E-2 

 

Table 3 RMSE (%) as per Newton’s method step for N = 12 

Wave (a) (b) (c) 

Step 1 0.207 2.341) 0.6281) 

Step 2 3.27E-3 0.285 3.15E-2 

Step 3 6.06E-5 2.01E-2 2.04E-22) 

Step 4 6.05E-5 4.85E-3 2.55E-22) 

Note that 1En = 1 × 10𝑛. 
1) Note that 0.628% is less than 0.207% or 2.34%. The reason is that 

the first step for wave (c) is the wave profile of wave (b) in step 4, and 

the first step for wave (b) is the wave profile of wave (a) in step 4, 

while the first step for wave (a) is the result by Shin (2021) with N  = 3. 
2) Note that 2.55E-2 is greater than 2.04E-2. It means that the 

minimum error is 2.04E-2. As the step is increased, the error 

oscillates between the two values. 

 

Table 4 Wave height to wavelength ratio, 𝐻/𝐿. 

Theories 휃 = 0.892 휃 = 0.999 휃 = 1.028 

Airy 0.142 0.159 0.164 

5th Stokes 0.123 0.135 0.138 

N = 1 0.119 0.129 0.131 

Shin (2021) 0.123 0.135 Not applicable 

N = 6 0.123 0.134 0.137 

N = 10 0.123 0.134 0.137 

N = 12 0.123 0.134 0.137 

 

 
Fig. 4 Dimensionless wave profiles calculated with N = 12 (ordinate is 

the dimensionless elevation from the still water line (SWL), 𝑘휂) 

-0.3

-0.1

0.1

0.3

0.5

0.7

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

E
le

v
a
ti

o
n

 

Phase [deg]

Wave (a)

Wave (b)

Wave (c)

Bernoulii's

constant



Newton's Method to Determine Fourier Coefficients and Wave Properties for Deep Water Waves 55 

 
Fig. 5 Relative horizontal velocities calculated with N = 12 (the 

ordinate is the dimensionless velocity, 𝑢/𝑐) 

 

 
Fig. 6 Relative vertical velocities calculated with N = 12 (the ordinate 

is the dimensionless velocity, 𝑣/𝑐) 

 

7. Conclusions 
 

This study aimed to provide a numerical method to calculate the 

Fourier coefficient, steepness, and reference depth parameter. The 

numerical procedure is much more simplified than Fenton’s method 

(Rienecker et al., 1981). The major simplifications are as follows: 

 

(1) Although the moving coordinate system by Dean was adopted in 

Fenton’s method, a dimensionless coordinated system was adopted in 

this study. As a result, all the partial derivatives with respect to 

wavelength are not required. Some parameters were eliminated.  

(2) All equations were formulated by tensor analysis. Therefore, 

numerical equations were much more simplified and had no errors.  

(3) In the other Fourier approximation, the required order was 

determined to reduce the error of the numerical integration in the water 

depth condition because it was solved simultaneously with the Fourier 

coefficients. On the other hand, the water depth condition was 

calculated independently. Therefore, the required order was reduced 

dramatically. 

 

The error was reduced when the required order was increased. 

Nevertheless, there is a limit to the required order. This study is not 

applicable when 𝑁 ≥ 13. Deep water breaking limitation was checked. 

This study is valid for waves in the range, 0 < 휃 ≤ 1.028 . The 

limitation 1.028 correspond to H/L = 0.137, which is slightly lower than 

the Michell theory.  
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Appendices 
 

Appendix A. Solution to KFSBC 
 

The KFSBC is presented in the conventional coordinate system as 

follows: 

 

𝑣 =
∂η

𝜕𝑡
+ 𝑢

∂η

𝜕𝑥
 (A1) 

 

Because 휁 = 𝑘(휂 − 휂0), we have 

 

∂η

𝜕𝑡
= −𝜔

𝜕

𝜕𝛽
{
휁

𝑘
+ 휂0} = −

𝜔

𝑘

𝜕휁

𝜕𝛽
= −𝑐

𝜕휁

𝜕𝛽
= −𝑐

𝑑휁

𝑑𝛽
  (A2) 

 

As 휁 = 휁(𝛽), then we have 
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𝜕휁

𝜕𝛽
=

𝑑휁

𝑑𝛽
 (A3) 

 

And 

 

∂η

𝜕𝑥
= 𝑘

𝜕

𝜕𝛽
{
휁

𝑘
+ 휂0} =

𝜕휁

𝜕𝛽
=

𝑑휁

𝑑𝛽
 (A4) 

 

Substituting Eqs. (A2) and (A4) into Eq. (A1), the KFSBC is 

presented in the dimensionless coordinate system as follows: 

 

𝑣 = −𝑐
𝑑휁

𝑑𝛽
+ 𝑢

𝑑휁

𝑑𝛽
 

(A5) 

 

Substituting Eqs. (2) and (3) into Eq. (A5),  

 

𝑐∑𝑛𝑎𝑛e
𝑛𝜁 sin 𝑛𝛽

𝑁

𝑛=1

= −𝑐
𝑑휁

𝑑𝛽
+ { 𝑐∑𝑛𝑎𝑛e

𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

}
𝑑휁

𝑑𝛽
 (A6) 

 

Because 𝛼 = ζ on the free surface, then the water particle velocities 

are presented as follows: 

 

𝑢(𝛽, 휁) =  𝑐∑𝑛𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

 
(A7) 

\ 

and  
 

𝑣(𝛽, 휁) = 𝑐∑𝑛𝑎𝑛e
𝑛𝜁 sin 𝑛𝛽

𝑁

𝑛=1

 
(A8) 

 

Dividing Eq. (A6) by the celerity and multiplying the result by 𝑑𝛽,  

 

{∑𝑛𝑎𝑛e
𝑛𝜁 sin 𝑛𝛽

𝑁

𝑛=1

} dβ = −𝑑휁 + { ∑𝑛𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} 𝑑휁 (A9) 

 

The above is presented as follows 

 

𝑑휁 = { ∑𝑛𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} 𝑑휁 − {∑𝑛𝑎𝑛e
𝑛𝜁 sin 𝑛𝛽

𝑁

𝑛=1

} dβ (A10) 

 

Where the first term on the right-hand side of Eq. (A10) is presented 

as follows: 

 

{ ∑𝑛𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} 𝑑휁 =
𝜕

𝜕휁
{∑𝑎𝑛e

𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} 𝑑휁 (A11) 

 

The second term on the right-hand side of Eq. (A10) is presented as 

follows: 

 

−{∑𝑛𝑎𝑛e
𝑛𝜁 sin 𝑛𝛽

𝑁

𝑛=1

} dβ =
𝜕

𝜕𝛽
{∑𝑎𝑛e

𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} 𝑑𝛽  (A12) 

 

The right-hand-side of Eq. (A10) is presented as follows: 
 

𝑑휁 = 𝑑 { ∑𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

} (A13) 

 

Integrating the above equation,  

휁 = ∑𝑎𝑛e
𝑛𝜁 cos 𝑛𝛽

𝑁

𝑛=1

+ 𝐶1 (A14) 

 

Using the definition of the reference line (Refer to Fig. 2), we 

have 휁 (±
𝜋

2
) = 0, then the integral constant is determined as follows: 

 

𝐶1 = −∑𝑎𝑛 cos
𝑛𝜋

2

𝑁

𝑛=1

 (A15) 

  

Substituting Eq. (A15) into Eq. (A14) results in Eq. (6). 

  

Appendix B. Solution for N=1 
 

For N = 1, the wave profile in Eq. (6) is represented as follows: 

 

ζ = 𝑎1𝑒
𝜁 cos 𝛽 (A16) 

 

From Eq. (8), the other wave profile is represented as follows: 

 

휁 

θ
 = 𝑎1e

𝜁 cos 𝛽 −
𝑎1
2𝑒2𝜁

2
+
𝑎1
2

2
 (A17) 

 

From Eq. (A16), crest height, i.e., the elevation at 𝛽 = 0  is 

determined as follows: 

 

ζc = 𝑎1𝑒
𝜁𝑐 (A18) 

 

Therefore, the Fourier coefficient is determined as follows: 

 

𝑎1 = ζc𝑒
−𝜁𝑐 (A19) 

 

From Eq. (A16), trough depth, i.e., the elevation at 𝛽 = π  is 

determined as follows: 

 

ζt = −𝑎1𝑒
𝜁𝑡 (A20) 

 

By substituting Eq. (A19) into Eq. (A20) and substituting Eq. (10) into 

the result, ζt = −휁𝑐𝑒
−𝑆. Substituting it into Eq. (10) allows the crest 

height to be determined as follows: 

 

ζc =
 

1 + 𝑒−𝑆
 

(A21) 

 

The trough depth is determined by substituting Eq. (A21) into ζt =

−휁𝑐𝑒
−𝑆:  

 

ζt = −
 𝑒−𝑆

1 + 𝑒−𝑆
 (A22) 

 

The wave steepness is determined so that Eq. (A16) and Eq. (A17) 

meet at phase 𝛽 = 0. Therefore the following equation can be used: 

 
S

1 −
 

2(1 + 𝑒−𝑆)
{1 − exp (

−2 
1 + 𝑒−𝑆

)}
= θ 

(A23) 

 

Eq. (A23) is the dispersion relation. For small amplitude, an 

approximation to Eq. (A23) is  = 휃, which gives the linear dispersion 

relation ω2 = 𝑔𝑘 . Applying Newton’s method to Eq. (A23), the 

steepness was calculated as follows 
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S = lim
𝑚→∞

 [𝑚+1] (A24) 

 

Where S[1] = θ and 

 

S[𝑚+1] =  [𝑚] −
𝑓( [𝑚])

𝑓′( [𝑚])
 

(A25) 

 

From Eq. (A23),  

 

𝑓( ) = 2S(1 + e−𝑆) − 휃 [2(1 + 𝑒−𝑆)

−  {1 − exp (−
2 

1 + 𝑒−𝑆
)}] 

(A26) 

 

And differentiating Eq. (A26) with regard to  ,  

 

𝑓′( ) = 2(1 + e−𝑆) − 2 𝑒−𝑆 

−휃 [−2𝑒−𝑆 − {1 − exp (−
2 

1 + 𝑒−𝑆
)}

− 2 {
1 + 𝑒−𝑆 +  𝑒−𝑆

(1 + 𝑒−𝑆)2
} exp (−

2 

1 + 𝑒−𝑆
)  ] 

(A27) 

 

The wave profile is calculated with the method in Ch. 3, in which 

𝐹(β, ζ) = −ζ + 𝑎1𝑒
𝜁 cos 𝛽. This result has an error of less than 1.165% 

for waves in the range, 𝐻/𝐿𝑜 ≤ 0.1 2, which is less than the error of the 

5th order Stokes’ wave theory. Wave (c) was calculated with N = 1, N = 

12, and the 5th Stokes theory, and the results were compared in Figs. 

A1–A3. N = 1 gave similar results as the 5th Stokes theory. Comparing 

Fig. 4 and Fig. A1, the wave profiles calculated by N = 1, and the 5th 

Stokes theory was less sharp than those calculated by N = 12. 

 

 

Fig. A1 Dimensionless wave profiles calculated with N = 1, N = 12, 

and 5th Stokes theory (the ordinate is the dimensionless 

elevation from SWL, 𝑘휂) 

 

 
Fig. A2 Relative horizontal velocities calculated with N = 1, N = 12, 

and 5th Stokes theory (the ordinate is the dimensionless 

velocity, 𝑢/𝑐) 

 

Appendix C. Solution for N=2 
 

For N=2, Eq. (6) is represented as follows: 

ζ = 𝑎1𝑒
𝜁 cos 𝛽 + 𝑎2𝑒

2𝜁 cos 2𝛽 + 𝑎2 (A28) 

 

Eq. (8) is represented as follows: 

 

휁 

θ
 = 𝑎1e

𝜁 cos 𝛽 + 2𝑎2e
2𝜁 cos 2𝛽 −

𝑎1
2𝑒2𝜁

2
− 2𝑎2

2𝑒2𝜁

− 2𝑎1𝑎2𝑒
3𝜁 cos 𝛽 + 2𝑎2 +

𝑎1
2

2
+ 2𝑎2

2 

(A29) 

 

 
Fig. A3 Relative vertical velocities calculated with N = 1, N = 12, and 

5th Stokes theory (the ordinate is the dimensionless velocity, 

𝑣/𝑐) 

 

The coefficients are determined so that Eqs. (A28) and (A29) are 

equal to each other at phase 𝛽 = 0 and 𝛽 = ±π and to satisfy Eq. (10). 

Eq. (A28) is represented for 𝑋1 = 휁(0) as follows: 

  

𝑋1 = 𝑎1𝑒
𝑋1 + 𝑎2(𝑒

2𝑋1 + 1) (A30) 

 

Eq. (A28) is represented for 𝑋2 = 휁(𝜋) as follows: 

 

𝑋2 = −𝑎1𝑒
𝑋2 + 𝑎2(𝑒

2𝑋2 + 1) (A31) 

 

Solving Eqs. (A30)–(A31) for 𝑎1 and 𝑎2, the two coefficients are 

determined as follows:  

 

𝑎1 =
𝑋1(𝑒

2𝑋2 + 1) − 𝑋2(𝑒
2𝑋1 + 1)

𝑒𝑋1(𝑒2𝑋2 + 1) + 𝑒𝑋2(𝑒2𝑋1 + 1)
 (A32) 

 

and 
 

𝑎2 =
𝑋2𝑒

𝑋1 + 𝑋1𝑒
𝑋2

𝑒𝑋1(𝑒2𝑋2 + 1) + 𝑒𝑋2(𝑒2𝑋1 + 1)
 (A33) 

 

The error of Eq. (A29) for 𝑋1 = 휁(𝜋) is represented as follows: 

 

𝐸1  = −
𝑋1(𝑋1 − 𝑋2)

θ
+ 𝑎1e

𝑋1 + 2𝑎2e
2𝑋1 −

𝑎1
2𝑒2𝑋1

2

− 2𝑎2
2𝑒2𝑋1 − 2𝑎1𝑎2𝑒

3𝑋1 + 2𝑎2 +
𝑎1
2

2
+ 2𝑎2

2 

(A34) 

 

The error of Eq. (A29) is represented for 𝑋2 = 휁(𝜋) as follows: 

 

𝐸2  = −
𝑋2(𝑋1 − 𝑋2)

θ
− 𝑎1e

𝑋2 + 2𝑎2e
2𝑋2 −

𝑎1
2𝑒2𝑋2

2

− 2𝑎2
2𝑒2𝑋2 + 2𝑎1𝑎2𝑒

3𝑋2 + 2𝑎2 +
𝑎1
2

2
+ 2𝑎2

2 

(A35) 

 

Therefore, there are five equations, i.e., Eqs. (A32)–(A35) and Eq. 

(10) to determine the unknown constants, 𝑎1, 𝑎2, 𝑋1, 𝑋2, and  . The set 

of equations was solved with Newton’s method presented in Ch. 3. The 

reference depth parameter and wave profile were determined using the 

method presented in Ch. 4. 
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