• Title/Summary/Keyword: Free surface damping

Search Result 75, Processing Time 0.027 seconds

Application of the B-Spline Based High Order Panel Method to the Floating Body Dynamics (B 스플라인 고차 패널법을 적용한 부유체 운동해석)

  • Ahn, Byoung-Kwon;Lew, Jae-Moon;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2008
  • A B-spline based high order panel method was developed for the motion of bodies in an ideal fluid, either of infinite extent or with a free boundarysurface. In this method, both the geometry and the potential are represented by the B-spline, which guarantees more accurate results than most potential based low order methods. In the present work, we applied this B-spline based high order method to the radiation problem of floating bodies. The boundary condition on the free surface was satisfied by adopting a Kelvin-type Green function and irregular frequencies were removed by placing additional control points on the free surface surrounding the body. The numerical results were validated by comparison with existing numerical and experimental results.

A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball (구와 평면간의 구름접촉거동에 관한 연구)

  • 김경모;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.554-570
    • /
    • 1990
  • he rolling contact behaviors between a smooth ball and a flat rough surface under dynamic load are intricately affected by many factors, such as the diameter of a ball, normal load and the roughness of a flat surface etc. Accordingly, the experimental study is done to find them on the base of elastic hysteresis loss as theoretical approach is very difficult. The experimental apparatus composed of damped-free vibration system is used. This paper investigates the damping characteristics on the rolling contact area through rolling friction force and logarithmic decrement versus displacement obtained in accordance with the variations of those factors, and presents a new experimental method to find out contact width using the relations of logarithmic decrement and rolling friction force with displacement.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Study on Roll Motion Characteristics of a Rectangular Floating Structure in Regular Waves (규칙파 중 사각형 부유식 구조물의 횡동요 운동특성에 대한 연구)

  • Kim, Min-Gyu;Jung, Kwang-Hyo;Park, Sung-Boo;Lee, Gang-Nam;Park, Il-Ryong;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • This study focused on the roll motion characteristics of a two-dimensional (2D) rectangular floating structure under regular beam sea conditions. An experiment was conducted in a 2D wave tank for a roll free decay test in calm water and the roll motion in a range of regular waves with and without heave motion to investigate the motion response and heave influence on the roll motion. A numerical study was carried out using Reynolds-averaged Navier Stokes (RANS)-based CFD simulations. A grid convergence test was conducted to accurately capture the wave condition on the free surface based on the overset mesh and wave forcing method. It was found in the roll free decay test that the numerical results agreed well with the experimental results for the natural roll period and roll damping coefficient. It was also observed that the heave motion had an impact on the roll motion, and the responses of the heave and roll motion from the CFD simulations were in reasonable agreement with those from the experiment.

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.

A Study on the Floating OWC Chamber Motion in Waves (부유식 OWC 챔버의 파중 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.191-197
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating.air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be used for the analysis of air-cushion vehicle motion as well as for the design oj a floating owe wave energy absorber.

  • PDF

A RANS-based Simulation for the Prediction of Hydrodynamic Rolling Moments around Rectangular Cylinders with Free Surface (자유수면을 포함한 사각기둥의 횡동요 유체동역학 수치해석)

  • Kim, Su-Whan;Kim, Kwang-Soo;Park, Il-Ryong;Van, Suak-Ho;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.667-674
    • /
    • 2006
  • Accurate prediction of ship dynamics, particularly roll motion, is very important in ship safety. In the past, empirical or vortex based methods were commonly used for the hydrodynamic roll damping predictions but they could not be applied to practical ship roll motion cause of limitations about geometries ad design conditions. Recently RANS-based techniques are developed for the practical ship motion analysis. In this study, RANS based roil analysis about a rectangular cylinder with WAVIS developed by MOERI/KORDI are performed and compared with the experimental data and other RANS results.

Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)

  • Seng, Sopheak;Jensen, Jorgen Juncher;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1024-1040
    • /
    • 2014
  • The theoretical background and a numerical solution procedure for a time domain hydroelastic code are presented in this paper. The code combines a VOF-based free surface flow solver with a flexible body motion solver where the body linear elastic deformation is described by a modal superposition of dry mode shapes expressed in a local floating frame of reference. These mode shapes can be obtained from any finite element code. The floating frame undergoes a pseudo rigid-body motion which allows for a large rigid body translation and rotation and fully preserves the coupling with the local structural deformation. The formulation relies on the ability of the flow solver to provide the total fluid action on the body including e.g. the viscous forces, hydrostatic and hydrodynamic forces, slamming forces and the fluid damping. A numerical simulation of a flexible barge is provided and compared to experiments to show that the VOF-based flow solver has this ability and the code has the potential to predict the global hydroelastic responses accurately.

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.

On the Hydrodynamic Coefficients of a 3-dimensional Body with a Forward Speed (전진속도를 고려한 3차원 물체의 동유체력해석)

  • J.K.,Choi;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.19-25
    • /
    • 1988
  • The three-dimensional boundary value problem for the unsteady motion of a ship which is translating and oscillating on the free surface of a deep water formulated. Under the assumption that the forward speed is small and order of $\varepsilon$, all formulations are made up to the first order of $\varepsilon$. For the numerical calculation, the three-dimensional source distribution method is applied, and the triangular elements are used to represent the hull surface. The results for the added mass and the damping coefficient for Series 60, $C_B=0.7$ at Fn=0 and Fn=0.2 shows good agreements with those of Inglis, Chang, and Inglis and Price.

  • PDF