• 제목/요약/키워드: Free surface conditions

검색결과 585건 처리시간 0.029초

防潮堤의 浸透流 解析에 관한 硏究 (Studies on Seepage Flow Analysis through Sea Dike)

  • 김관진;조병진;윤충섭
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.87-99
    • /
    • 1992
  • A mathematical model, UNSATR which predicts the seepage flow through the body of dike especially under the tidal fluctuation has been developed. This model has been revised from UNSAT2 model which was developed on the basis of the saturated-unsaturated theory by Neuman. UNSATR has been verified and applied to the hydraulic model in order to estimated the seepage quantity, the formation of free water surface etc. The results lead to the following conclusions : 1. Seepage rates between the mathematical model and hydraulic model experiment are very similar to each other both in constant and transient water level conditions. 2. The lapsed time to be steady state of the free water surface becomes late as the tidal levels are relatively low mainly due to the seepage flow from the unsaturated zone of the body of dike. 3. Under the transient state of water levels, owing to the flow from the unsaturated domain, streamlines crossing to the free water surface are found and time lag during a falling tide may allow the free water surface inside the body of dike to stand at a high level than the outside water level. 4. The utility and validity of UNSATR model are convinced when the analyses on seepage problems through the porous embankment of the soil structures on the conditions of the steady and unsteady states are carried out.

  • PDF

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

무 알칼리 유리의 연마 조건에 따른 영향 (Effect of Polishing Grinding Conditions on Alkali-free Glass)

  • 박영희;홍민성
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.440-444
    • /
    • 2016
  • Owing to the introduction of various IT devices with emphasis on portability and design, the TFT (thin film transistor liquid crystal display) panel applied to IT devices has the same shape as the product, and the portability requirement of IT devices has resulted in a need for panels with higher rigidity. In this study, the effect of grinding conditions such as the feed rate and edge speed of edge grinding on the surface roughness and chipping of the machined surface is investigated using a metal bond wheel. During edge grinding of alkari-free glass, weak mechanical property of glass results in big chipping owing to generation of tensile stress at the end of grining operation. The results of this study show that the grinding characteristics of alkali-free glass are obtained and meet industry requirements.

내재적 경계 조건을 이용한 자유표면 유동 수치해석 (Numerical Simulation on the Free Surface using implicit boundary condition)

  • 이공희;백제현
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Free spans monitoring of subsea pipelines

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.59-72
    • /
    • 2011
  • The objective of this work is to investigate the possibility of using the longitudinal strain on the surface of a pipe to determine the inception of dangerous free spanning. The long term objective is to develop an online monitoring technique to detect the development of dangerous free spanning in subsea pipelines. This work involves experimental study as well as finite element modeling. In the experiments, the strains at four points on a cross section of a pipeline inside the free span zone are measured. Pipes with different boundary conditions and different diameter to length ratios were tested. The pipe is treated as a simple beam with fixed-fixed or simply supported boundary conditions. The variation of the strains as a function of the diameter to length ratio gives a pointer to the inception of dangerous free spanning. The finite element results agree qualitatively with the experiments. The quantitative discrepancy is a result of the difficulty to replicate the exact boundary conditions that is used by the finite element program.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • 한국수자원학회논문집
    • /
    • 제44권6호
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

자유수면 근처에서 직진하는 BB2 잠수함의 심도별 유체력과 중립운항에 대한 구속모형시험 연구 (A Captive Model Test on Hydrodynamic Force and Neutral Level Flight of BB2 Submarine in Straight Operation at Near Free Surface with Different Depths)

  • 권창섭;김동진;윤근항;김연규
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.288-295
    • /
    • 2022
  • In this study, the force and moment acting on a Joubert BB2 submarine model at depths near the free surface were measured through a captive model test with the scale ratio of 1/15. Based on the experiment, the pitch moment and heave force due to the "Tail suction effect", including the change in surge force with depth near the free surface, were quantitatively analyzed. The change of force and moment according to the relative position of the sail and the free surface was reviewed with the free surface waves generated for each depths. As a result, the angle of attack of the hull to counteract the pitch moment induced by the tail suction effect was derived. The effect of the hydrostatic moment component according to the angle of attack on the equilibrium of pitch moment was also taken into account. The control plane performance tests for the X-type rudder and sail plane were conducted in snorkel and surface depth conditions to figure out the control plane angles for the neutral level flight of the submarine at near free surface. The results of this study are expected to be used as a reference data for the neutral level flight of the submarine at near free surface operation in the free running model test as well as numerical studies.

자유곡면의 밀링 자기연마 복합가공에 관한 연구 (Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface)

  • 곽태경;김상오;곽재섭
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

인공해수중에서 연강 용접부의 표면구열 성장거동 (Study on Surface Crack Propagation Behaviour of Mild Steel Weldment in Synthetic Sea Water)

  • 이종기;정세희
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.492-501
    • /
    • 1990
  • It was known that the fracture incidences of offshore structure were mostly originated from the surface defects. Especially, in the case of the welded structures, since the welded region has some defects and incomplete beads which are apt to behave like the surface cracks, it has been necessary to evaluate the environmental effects on crack growth at HAZ for the design crack growth behaviour at multi-pall HAZ for SWS41 steel under free corrosion and cathodic protection(-0.9V vs Ag/Agcl) conditions. The results are summarized as follows ; (1) Crack growth rate of the as weld in air was faster than that of the parent and PWHT specimens over all .DELTA.K rang. (2) In free corrosion test, surface crack growth rate of the as welded was decreased in comparison with that of the parents. (3) In fatigue test under cathodic protection, cathodic electric potential(-0.9V vs Ag/Agcl) for the SWS41 steel parent was effective, while for the as welded ineffective. (4) There was a tendency that the exponent(m) of the Paris' equation was decreased in order of microhardness magnititude in air and under cathodic protection conditions and vise versa in free corrosion. (5) Fracture surface has dimples and ductile striations in air test, but transgranular cracks and brittle striations under cathodic protection test.

The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon

  • Saghi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.153-168
    • /
    • 2016
  • Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element - finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.