• Title/Summary/Keyword: Free Vibration Characteristics

Search Result 516, Processing Time 0.026 seconds

Free Vibrations of Tapered Beams with General Boundary Conditions and Tip Masses (끝단 질량과 일반적인 단부조건을 갖는 변단면 보의 자유진동)

  • 오상진;이병구;박광규;이종국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.802-807
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and tip masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the translational spring parameter, the rotational spring parameter, the mass ratio and the dimensionless mass moment of inertia.

  • PDF

Free Vibrations of Generally Restrained Beams (일반적인 단부조건을 갖는 보의 자유진동)

  • 신성철;김봉규;안대순;김선기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.864-869
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and point masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a range of non-dimensional system parameters.

  • PDF

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Analytical Study on the Free Vibration of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 직사각 평판의 고유진동에 관한 해석적 연구)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.647-651
    • /
    • 2002
  • This study dealt with the free vibration of two identical rectangular plates coupled with fluid. In order to investigate the vibration characteristics of fluid-coupled rectangular plates, an analytical method based on the finite Fourier series expansion and Rayleigh-Ritz method was suggested. A commercial computer code, ANSYS was used to perform finite element analysis and we investigated the vibration characteristics with mode shapes and natural frequencies. As a result, the transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of fluid bounding and plate boundary condition on the fluid-coupled natural frequency were investigated. It was shown that the mode numbers increased, the normalized natural frequencies monotonically increased.

  • PDF

A Study on the Vibration of an Annular Piezoelectric Motor Stator (압전 모터 스테이터의 진동 해석)

  • 최종운;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.15-21
    • /
    • 1999
  • This study investigates the free and forced vibration characteristics of an annular piezoelectric motor stator constructed of two piezoelectric material layers and one stainless steel layer. The annular piezoelectric motor stator is subjected to a travelling load produced by piezo drive electrical voltage input to the two piezoelectric layers. The stator is modeled as an annular laminated plate based on the classical plate theory and the governing equations are derived via Hamilton's variational principle. Variation of the free vibration characteristics as a function of several design parameters has been studied and based on this result, the forced vibration responses to the input electricity of various frequencies and magnitudes are investigated. The obtained results will provide an important criterion, a priori, in the design of piezoelectric motors.

  • PDF

A Study on the Modal Characteristics of Submerged Circular-tube-beam by Experiment (원형중공빔 접수진동특성의 실험적 고찰)

  • Kim, Hyun-Soo;Kang, Yun-Ki;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.276-276
    • /
    • 2003
  • This paper dealt with an experimental study on the free vibration of circular-tube-beam submerged in water. A circular-tube-beam is commonly founded on the nuclear fuel assembly system in nuclear reactor. The nuclear fuel assembly susceptible to flow-induced vibration in nuclear reactor. So, the nuclear fuel assembly be designed to avoid any resonance due to the vibration during the reactor operation. In the experiment, applied boundary condition is clamped-free and the effect of water height to natural frequency and damping is studied. The experiment in air and in water has been performed. Used experimental method is impact exciting method. The natural frequencies and damping ratio according to water height is presented.

  • PDF

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions (다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성)

  • 김영완;이영신
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.485-492
    • /
    • 1999
  • The effects of boundary conditions on vibration characteristics for the ring stiffered composite cylindrical shells are investigated by theoretical and experimental method. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect are adopted to derive the frequency equation. In experiment, the impact exciting method is used to obtain the vibraton results. Five different boundary conditions: clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study.

  • PDF