• Title/Summary/Keyword: Free Torque

Search Result 151, Processing Time 0.03 seconds

Accelerated Co-evolutionary Algorithms

  • Kim, Jong-Han;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • A new co-evolutionary algorithm, of which the convergence speed is accelerated by neural networks, is proposed and verified in this paper. To reduce computational load required for co-evolutionary optimization processes, the cost function and constraint information is stored in the neural networks, and the extra offspring group, whose cost is computed by the neural networks, is generated. It increases the offspring population size without overloading computational effort; therefore, the convergence speed is accelerated. The proposed algorithm is applied to attitude control design of flexible satellites, and it is verified by computer simulations and experiments using a torque-free air bearing system.

Study on the Design of a Novel Adaptive Gripper (적응형 그리퍼 설계 연구)

  • Kim, Gi Sung;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.325-335
    • /
    • 2019
  • In this paper, a novel adaptive gripper with underactuation is presented, which can change its configuration to parallel or power grip mode according to object shapes. Differently from the commercial adaptive gripper by RobotiQ, the proposed gripper includes an actual parallelogram inside a five-bar mechanism, which allows the free selection of actuator locations and can reduce actuation torques effectively. The forward and inverse kinematics for two grip modes and statics analysis have been analyzed. From the comparative design, the proposed gripper has about 20% smaller size, 3.7% larger stroke, and 30.5% smaller average actuation torque than the commercial one.

Vibration Control of Flexible Manipulator (유연한 조작기의 진동 제어)

  • Bae, Keon-Hyo;Lee, Jae-Won;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.163-169
    • /
    • 1993
  • A flexible manipulator can move in the high speed even with the small driving torque. The dymanic equations of flexible manipulator which include 2 vibrational modes are derived using the clamped-free boundary condition. Simulation results of the 6th order model are well matched with experimental results. The hub angle of the flexible mainpulator can be controlled without vibration of the beam by the feedback of both hub angle and strain. The overshoot of the hub angle in the step response is reduced without sacrificing the rise time using the cycloidal function instead of the step function as the referenmce input.

  • PDF

Evaluation of Characteristics and Reliability of an Auger Crane with Built-in Hydraulic Extender (유압식 확장기가 내장된 오거 크레인의 특성 및 신뢰성 평가)

  • Kim, Jeom-Sik;Kwon, Sin-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • This study evaluated the characteristics and reliability of an auger crane with a built-in hydraulic extender. The field test of the hydraulic extender was performed with the hydraulic lines filled with hydraulic fluid and free of air. The pressure generated during the test was measured with a digital pressure gauge. The crane was considered to have undergone one cycle of the excavation process after it had performed excavation under three conditions at the same location. This process was performed three times in total. From the results of the excavation using the hydraulic extender, it was found that the maximum pressure and torque measured were 19.9 [MPa] and 895.4 [$kgf{\cdot}m$], respectively. The rotation force of the auger crane generated at this time signifies a horizontal force. If the excavation diameter of the auger crane is increased, the rotation speed is reduced causing the circumferential speed to also be reduced. The torsional shear stress of the extendable auger crane was calculated to be approximately 23.5 [MPa]. However, the rotation shaft material used for this system was carbon steel for machine structural use (SM45C). Since the minimum torsional yield stress is greater than 150 [MPa] according to KS D 3752, it means the equipment has secured a safety factor greater than 6. Therefore, it was found that when performing work using the extendable auger crane, it exhibited no problems with the safety and reliability of its shaft.

Experimental Study of Micro hydropower with Vortex Generation at Lower Head Water (저낙차에서 와류발생부를 구비한 마이크로 소수력에 관한 실험 연구)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • This paper described a laboratory investigation of micro hydropower at lower head water in a free vortex flow. The vortex height, turbine rotation and torque for straight blade with inner curved edge, twisted blade and curved blade were investigated at the flow rate of 0.0069 ㎥/s in the inlet channel. The results showed that the optimum vortex strength occurred within the range of the diameter of basin to the outlet diameter ratios of 0.17~18.5. The power output and efficiency of straight blade were higher as compared to other blades. The highest amount of generated energy was 12.33 W, the torque was 0.91 N·m and the highest efficiency by considering effective head was 29.5 %, whereas the highest efficiency by considering vortex height was 80.5 % at the rotational speed of 132 rpm. The water vortex velocity of straight blade was about 2.8 times larger than the mean velocity in the inlet channel.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

The Effects of Taekwondo Traing Causing Leg-muscular Strength for Elementary School Children (태권도 수련이 초등학생 하지근력에 미치는 영향)

  • Yoon, Young-Cho;Jung, Jae-Min;Kim, Tae-Ho;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • Purpose:The purpose of this study is to investigate the effects of Taekwondo training causing leg-muscular strength for elementary school children. Methods:The subjects were Taekwondo group (n=20) and non-Taekwondo group (n=20) from 5-6 graders of elementary school. The Tkd group exercised Taekwondo and the non-Taekwondo group exercised free gymnastics. The subjects were measured 3 times(pre, mid and after)during the 8weeks program. The leg muscular strength peak torque and average power were measured. And the extension-flection of angular speed 60 deg/sec and 180 deg/sec was measured. Results:The results of this study can be summarized as follows: 1. Compared with the Tkd group, the non-Tkd group showed no significant difference in tests statistically in case of right-left of pre-4weeks. The leg muscle's peak torque did not show significant difference in the extension angular 60 deg/sec(p>.05). 2. The score of flection angular speed 60deg/sec was not different in tests leg strength of right-left to pre-4weeks(p<.05), but the muscle was increased according to the amount of time spent in case of the 4-8weeks. 3. Compared with the Tkd group, the non-Tkd group showed no significant difference in tests statistically in case of right-left of pre-4weeks. The leg muscle's peak torque did not show significant difference in the extension angular 180deg/sec(p>.05). The right leg muscular strength was increased in case of the 4-8weeks. The left leg showed no difference. 4. Leg muscular strength was increased in the case of the pre-4weeks in the right of flection angular speed 180deg/sec. The left did not show difference. The right leg muscle in case of the 4-8weeks showed no difference. The left showed significant difference. Conclusion:Taekwondo training is effective for leg-muscular strengthing for elementary school children.

  • PDF

Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations (강제동요를 이용한 원형실린더 점성 롤댐핑 연구)

  • Yang, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The roll damping problem in the design of ships and offshore structures remains a challenge to many researchers due to the fluid viscosity and nonlinearity of the phenomenon itself. In this paper, the study on viscous roll damping of a circular cylinder was carried out using forced oscillations. The roll moment generated by forced oscillation using a torque sensor was measured for each forced oscillation period and compared with the empirical formula. Although the magnitude of the measured torque from the shear force was relatively small, the results were qualitatively similar to those obtained from the empirical formula, and showed good agreement with the quantitative results in some oscillation periods. In addition, the flow around the circular cylinder wall was observed closely through the PIV measurements. Owing to the fluid viscosity, a boundary layer was formed near the wall of the circular cylinder, and a minute wave was generated by periodical forced oscillations at the free surface through the PIV measurement. In this study, the suitability of the empirical formula for the roll moment caused by viscous roll damping was verified by model tests. The wave making phenomenon due to the fluid viscosity around the wall of a circular cylinder was testified by PIV measurements.

Research on the support of larger broken gateway based on the combined arch theory

  • Yang, Hongyun;Liu, Yanbao;Li, Yong;Pan, Ruikai;Wang, Hui;Luo, Feng;Wang, Haiyang;Cao, Shugang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.93-102
    • /
    • 2020
  • The excavation broken zones (EBZ) of gateways is a significant factor in determining the stability of man-made opening. The EBZ of 55 gateways with variety geological conditions were measured using Ground Penetrating Radar (GPR). The results found that the greatly depth of EBZ, the smallest is 1.5 m and the deepest is 3.5 m. Experimental investigations were carried out in the laboratory and in the coal mine fields for applying the combined arch support theory to large EBZ. The studies found that resin bolts with high tensile strength and good bond force could provide high pretension force with bolt extensible anchorage method in the field. Furthermore, the recently invented torque amplifier could greatly improve the bolt pretension force in poor lithology. The FLAC3D numerical simulation found that the main diffusion sphere of pretension force was only in the free segment zone of the surrounding rock. Further analysis found that the initial load-bearing zone thickness of the combined arch structure in large EBZ could be expressed by the free segment length of bolt. The using of high mechanical property bolts and steel with high pretension force will clearly putting forward the bolt length selection rule based on the combined arch support theory.

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.