Browse > Article
http://dx.doi.org/10.17663/JWR.2020.22.2.121

Experimental Study of Micro hydropower with Vortex Generation at Lower Head Water  

Choi, In-Ho (Department of Civil Engineering, Seoil University)
Kim, Jong-Woo (Department of Civil Engineering, Seoil University)
Chung, Gi-Soo (Korea Institute of Industrial Technology(KITECH)/Hanjung Energy Networks Co., Ltd.)
Publication Information
Journal of Wetlands Research / v.22, no.2, 2020 , pp. 121-129 More about this Journal
Abstract
This paper described a laboratory investigation of micro hydropower at lower head water in a free vortex flow. The vortex height, turbine rotation and torque for straight blade with inner curved edge, twisted blade and curved blade were investigated at the flow rate of 0.0069 ㎥/s in the inlet channel. The results showed that the optimum vortex strength occurred within the range of the diameter of basin to the outlet diameter ratios of 0.17~18.5. The power output and efficiency of straight blade were higher as compared to other blades. The highest amount of generated energy was 12.33 W, the torque was 0.91 N·m and the highest efficiency by considering effective head was 29.5 %, whereas the highest efficiency by considering vortex height was 80.5 % at the rotational speed of 132 rpm. The water vortex velocity of straight blade was about 2.8 times larger than the mean velocity in the inlet channel.
Keywords
Vortex; Micro hydropower; Low head water; Blade; Vortex height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dhakal, R (2017). Computational and experimental investigation of runner for gravitational water vortex power plant. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), vol. 373, pp. 363. https://doi.org/10.1109/ICRERA.2017.8191087
2 Drioli, C (1969). Esperienze su installazioni con pozzo di scarico a vortice, L'Energia Elettrica, 66(6), pp. 399-409. [French literature]
3 Gheorghe-Marius, M and Tudor, S (2013). Energy capture in the gravitational vortex water flow. J. of Marine Technology & Environment vol 1. http://worldcat.org/issn/18446116
4 Grote, KH, and Feldhusen, J (2005). Dubbel Taschenbuch fur den Maschinenbau. 21. Auflage Springer Verlag Berlin Heidelberg. https://www.springer.com/de/book/9783642388910
5 Hager, WH (1985). Head-discharge relation for vortex shaft. J. of Hydraulic engineering. 111(6), pp. 1015-1020. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(1015)   DOI
6 Kleinschroth, A (1972). Stroemungsvoegange im Wirbelfallschacht. Mitteilung des Institutes fuer Hydraulik und Gewaesserkunde, TU Muenchen, Nr. [German literature]
7 Odgaard, AJ (1986). Free-surface air core vortex. J. of Hydraulic Engineering, vol. 112, no. 7, pp. 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610)   DOI
8 Mohanan, A (2016). Power Generation with Simultaneous Aeration using a Gravity Vortex Turbine. International J. of Scientific & Engineering Research, vol. 7, no. 2, pp. 19-24. https://www.ijser.org/onlineResearchPaperViewer.aspx
9 Mulligan, S and Casserly, J (2010). The Hydraulic Design and Optimisation of a Free Water Vortex for the Purpose of Power Extraction. Final Year Civil Engineering Project. Institute of Technology Sligo.
10 Mulligan, S, Casserly, J and Sherlock, R (2014). Hydrodynamic investigation of free-surface turbulent vortex flows with strong circulation in a vortex chamber. Proceedings of the 5th IAHR International Junior Workshop on Hydraulic Structures. Spa, Belgium, 28-30 August. https://popups.uliege.be/ijrewhs2014/index.php?id=168
11 Petrasch, K (2009). Fischwanderhilfe zur Uberwindung unterschiedlich hoher Wasserlinien zwischen Wasserzulauf und Wasserablauf an kunstlichen Wasserstauwerken. Germany, Patent DE102009026000A1. 18 June. [German literature]
12 Power, C, McNabola, M and Coughlan, P (2016). A parametric experimental investigation of the operating conditions of gravitational vortex hydropower(GVHP). J. of Clean Energy Technologies, vol.4, no.2, pp. 112-119. DOI: 10.7763/JOCET.2016.V4.263
13 Yaakob, OB, Ahmed, YM, Elbatran, AH and Shabara HM (2014). A Review on Micro Hydro Gravitational Vortex Power and Turbine Systems. J. Teknologi. 69(7), pp. 1-7. https://doi.org/10.11113/jt.v69.3259
14 Rathke, J, Zotloeterer, F and Wendeland, M (2012). Kleinwasserkraftwerk mit Gravitationswirbel. BWK - Das Energie-Fachmagazin 3-2012, Seite 18-21, Springer Velag. https://pm-energie.webnode.com/products/kleinwasserkraftwerk-mit-gravitationswirbel-wasserkraft/
15 Shabara, HM, Yaakob, OB, Ahmed, YM and Elbatran, AH (2015). CFD Simulation of Water Gravitation Vortex Pool Flow for Mini Hydropower Plants. J. Teknologi 74(5), pp. 77-81. https://doi.org/10.11113/jt.v74.4645
16 Singh, P and Nestmann, F (2009). Experimental optimization of a free vortex propeller runner for micro hydro application. Experimental Thermal and Fluid Science, vol. 33, no. 6, pp. 991-1002. https://doi.org/10.1016/j.expthermflusci.2009.04.007   DOI
17 Wanchat, S and Suntivarakorn, R (2012). Preliminary Design of a Vortex Pool for Electrical Generation. J. of Computational and Theoretical Nanoscience, vol. 13, no. 1, pp. 173-177. DOI: 10.1166/asl.2012.3855
18 Wardhana, EM, Santoso, A and Ramdani, AR (2019). Analysis of Gottingen 428 Airfoil Turbine Propeller Design with Computational Fluid Dynamics Method on Gravitational Water Vortex Power Plant. International J. of Marine Engineering Innovation and Research, Vol. 3(3), Mar. 2019. pp. 69-77. DOI: 10.12962/ j25481479.v3i3.4864
19 Zotloeterer, F (2004). Hydroelectric power plant. Patent WO 2004/061295A3,2004.
20 Zotloeterer, F (2011). Das Gravitationswasserwirbelkraftwerk. Zement und Beton 3/11, Zement + Beton Handels-u. Werbeges.m.b.H., Wien. [German literature]