• Title/Summary/Keyword: Free Surface Flows

Search Result 198, Processing Time 0.028 seconds

Three-Dimensional Numerical Computation and Experiment on Periodic Flows under a Background Rotation (배경회전하에서 형성되는 주기적 유동의 3차원 수치해석과 실험)

  • Suh, Yong-Kweon;Park, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2003
  • We present numerical and experimental results of periodic flows inside a rectangular container under a background rotation. The periodic flows are generated by changing the speed of rotation periodically so that a time-periodic body forces produce the unsteady flows. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons \ulcornerf discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE (연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.68-76
    • /
    • 2009
  • The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

COMPUTATION OF FREE-SURFACE FLOWS DUE TO PRESSURE DISTRIBUTION

  • Jack Asavanant;Montri Maleewong;Choi, Jeong-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.137-152
    • /
    • 2001
  • Steady two-dimensional flows due to an applied pressure distribution in water of finite depth are considered. Gravity is included in the dynamic boundary condition. Gravity is included in the dynamic boundary condition. The problem is solved numerically by using the boundary integral equation technique. It is shown that, for both supercritical and subcritical flows, solutions depend on three parameters: (i) the Froude number, (ii) the magnitude of applied pressure distribution, and (iii) the span length of pressure distribution. For supercritical flows, there exist up to two solutions corresponding to the same value of Froude number for positive pressures and a unique solution for negative pressures. For subcritical flows, there are solutions with waves behind the applied pressure distribution. As the Froude number decreases, these waves when the Froude numbers approach the critical values.

  • PDF

IMPROVEMENT OF MPS METHOD IN SIMULATING VIOLENT FREE-SURFACE MOTION AND PREDICTING IMPACT-LOADS (유체 충격 하중 예측을 위한 MPS법의 개량)

  • Hwang, S.C.;Lee, B.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • The violent free-surface motions and the corresponding impact loads are numerically simulated by using the Moving Particle Semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flows. In the original MPS method, there were several shortcoming including non-optimal source term, gradient and collision models, and search of free-surface particles, which led to less-accurate fluid motions and non-physical pressure fluctuations. In the present study, how those defects can be remedied is illustrated by step-by-step improvements in respective processes of the revised MPS method. The improvement of each step is explained and numerically demonstrated. The numerical results are also compared with the experimental results of Martin and Moyce (1952) for dam-breaking problem. The current numerical results for violent free-surface motions and impact pressures are in good agreement with their experimental data.

Computation of Two-Fluid Flows by Finite Volume Method and Discussion on Wave Breaking (유한체적법에 의한 이층류 계산 및 쇄파에 관한 토의)

  • Milovan Peric
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2000
  • 수중날개를 대상으로 임의로 변형하는 이층류의 수직계산을 수행하였다. 계산은 비구조격자와 접면포착법을 이용하여 자유표면의 형상을 결정하였다 본 연구에 의하면 낮은 물속 깊이와 높은 프루드수에서 쇄파현상이 발생하였다 수중날개에 대하여 쇄파형상의 효과를 연구하였고 실험값과 계산값을 상호비교함으로서 격자의 민감성을 수직적으로 확인하였다.

  • PDF

Finite-Volume Model for Shallow-Water Flow over Uneven Bottom (고르지 않은 바닥을 지나는 천수 흐름에 대한 유한체적 모형)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.139-153
    • /
    • 2013
  • For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the model incorporated the volume/free-surface relationship (VFR) to consider the partially submerged cells (PSC). It was identified that a simpler version of the weighted surface-depth gradient method in the MUSCL was equivalent to the original one in the accuracy for 1D steady flows. It was verified that the flux gradient term and the bottom gradient source term were well-balanced exactly by the VFR for the 1D PSC. The VFR for the triangular PSC settled the problem which the governing equations were not well-balanced by the DFB technique for the 2D PSC. There were good agreements in simulations and experiments for 2D dam-break flows over a triangular sill and a round bump. In addition, the partial dam-break flow was successfully simulated for flooding of roughnesses in an irregular bottom as well as a sloping one. Therefore, this model is expected to be applied to the real river with uneven topography.