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and Discussion on Wave Breaking

SEUNG-HYUN KWAG* AND MILOVAN PERIC#*~
*Halla Univ., #66 Heungup, Wonju 220-712, Korea
“*Tech. Univ. of Hamburg Lammersieth 90, D-22305 Hamburg, Germany

SRl 212 olFF A W ol BY =

53" - Milovan Peric**
*&tglef &k, **Tech. Univ. of Hamburg
KEY WORDS: Free surface A-9-T, Two fluid flows ©]&%, Finite volume method 3-8+, Submerged hydrofoll Z=527),
Interface capturing scheme #1937 29
ZE B p£EYE gides f/'/ L= WS g MEiTS FystdTh S JaEE ST A2 o] £8lo]
FlLLRES B4 2390 &K BrEd oold We g5 Zojo 2 ZRuoi] Fgdao] Lsisich 2]
tiafo] (i E o] sRE ¢ 7‘3/%’ FEgla A ﬁx‘— L ICE o 2A] (579 prsitS Hftnye 2 &elsly ol

1. Introduction experimentally by Duncan(1983) with non-breaking waves, to
which both kinds of solution methods could be applied, and
Numerical ~simulation of two-fluid flows, including the  another with breaking waves, for which no experimental data is
deformation of the free surface, is onc of the big challenges in  available and where only the interface-capiuring approach can be
fluid mechanics. Many methods (Farmer er ql, 1994; Muzaleriza  employed.
et al, 1997) of this kind have been developed and successfully
applied to flows. However, if the body form is complicated, these 2. Numerical Solution Method
methods are difficult to use because the grid has (o be adapted
both to the free swface and body shape: the grid may deform too The starting poinis are the mass and momentum conservation
much in this process and a re-gridding may become necessary.  equations, which read in integral form:
When the body form is relatively simple, the interface (racking

approach is convenient in which only the water flow is computed Té’{z‘ J odV+ f o(v—1p) - ndS=0 0
and the grid moves {o adapt to the free surface.  Another ; i

a -
difficulty in handling interface tracking methods is the breaking, & Joudv+ [(oulo— vy - nds )
overturning, or wave splashing. In many cases, il is important to = f {y=pi) - ndS+ f FbdV

compute the flows of both liquid and gas simultaneously, a4 .
especially when the gas is enclosed by liquid and buoyancy effects dt j ydvE f (oo™ vp - mdS=0 @
become important. For this rcason, interface capturing mcthods
have to be used. where p is the fluid density, V is the control volume (CV)
When a hydrofoil is closc cnough to the free surfacc and when  bounded by a closed surface S, v is the fluid velocity vector
its velocity exceeds a certain level, waves arc generated at the free ~ Whose Cartesian components arc w, vy is the velocity of the
surface above it. They can be smooth or they may undergo  contol surface, 7 is the time, p is the pressure, b is the body
breaking. The wave breaking causes fluctuations of both drag and  foree in the direction of the Cartesian coordinate x,, n is the unit
lifi; this can lead to vibrations on board of the vessel and may normal to § and directed outwards, and r, are the components of
also causc structural damage. Tt is therefore of great practical the viscous stress temsor as,
importance to predict the low around the submerged hydrofoils. 9. ou
We present here computations of flows around submerged -l axi axf) @)

hydrofoils for t nfiguralions: that s sludied
Y > or o comlig one Tt s sl with ¢ being the dynamic viscosity of the fluid. When the
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control volume moves, the so called space conservation law (SCL)
has also o be satisfied; it is expressed by the following relation
between (he rate of change of CV and its surface velocity:

| av= [ vs- mds=0 5

For morc details on discretization methods, see (Ubbink(1997),
Muzaferiza er al.(1998)

Both fluids are treated as single effective fluids whose
propertics vary in space according to the volume fraction of each

phasc, ic.,
p=picte(l1—¢), p=mctull—0c) (©)

where subscripts 1 and 2 denotc the two fluids (liquid and gas).
If onc CV is partially filled with one and partially with the other
fluid (.c.. 05c=1), it is assumed that both (luids have the samc

velocity and pressure.

Fig. 1 Normalized variables diagram (CDS: Central Diff. Schemc,
DDS: Downwar)

The sharpness of the interface without over- and undershoots
can be achicved by limiting the approximation of the cell-face
value to lic in the shaded area of thc so called normalized
variable diagram (NVD) (Leonard, 1997)
local normalized variable ¢ in the vicinity of the cell-center C 1s

shown in Fig. 1. The

defined

oo A —cy
c(n)= py—— (N
where subscripts "0 and "D’ denotc nodes upstream and
downstream of the cell-center C, and r is the position vector. The
particular choice selected here is indicated in Fig. 1 as HRIC
(high tesolution interface capturing).

. v-nSdt }
Cn_ dV( (8)
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Finally, the cell-facc value of ¢ is computed according lo eq.
(7) as

o= (?/M(C” C(/)"‘(.‘(, (]2)

3. Results and Computations

The computations arc performed for two configurations with a
NACAQ0012  hydrofoil
non-breaking and another with breaking waves. The angles cof
ailack are 5° and 30" , Froude number 0.567, Reynolds number
10° & 1.776 x 10°, and turbulence model is of thc k-& RNG
type. The number of cell is 13540, time increment is 0.0005 and

- . 5 - .
the reference pressure is 10° Pa. The minimum value of y™ is 5

under the frec surface: one with

and maximum 410.

Fig. 3(a) Unstructured grid view (laminar)
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Fig. 3(b) Volumme fraction(laminar)
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Fig. 3(c) Pressure distribution (laminar)
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Fig. 3(d) Velocity vectors (laminar)

Fig. 2 shows the coordinate systcm for computation in which ¢
is the angle of attack and d submergence depth.

Fig. 3 shows the computed results of the two fluids including
frec-surface for the laminar flows. Both liquid and gas flows are
computed. This is important when gas is trapped in liquid or when
gas flows with a high velocity, Since the grid does not have to be
adapted to the shape of the free surface, problems with grid
adaptations are avoided. The unstructured grid can be seen in Fig,
3(a) where he fincr grid is used in some part of the free-surface
and behind the trailing edge mostly influcnced by the hydrofoil.
The volume fraction is simulated along the time from t = 3.0 to
5.0. The breaking or overtuming is well captured without any
mumerical  difficulties. This is one of the advantages of the
interface capturing method. The overall pressure contour is seen in
Fig. 3(c) with a perspective view around the leading edge. The
velocity vectors are simulated for two (luids: air and water region.
In the computation of laminar [lows, the free surface may deform
in an arbitrary manner; the present interface capturing method can
simulate the shape of the free surface with the surface tension.

Fig. 4 shows the computed results for the turbuleni flows. As
seen in Fig 4(a), the present mcthod predicts well the extremc
deformation of the free-surface. The pressure, velocity and volume
fraction are seen in Fig. 4(b), (¢) and (d), respectively. In the
numerical solution procedure, the outer iteration of momentum and
pressurc correction equations are performed first in which the
valuc of the eddy viscosity is based on the value of k and & at
the end of the preceding iteration. After this has been completed,
an outer iteration of the turbulent kinctic energy and dissipation
equations is made. Since these cquations are highly nonlinear, they
have to be linearized prior to iteration. After completing an
iteration of the turbulence model equations, it is necessary to
tecalculate the eddy viscosity and start a new outer iteration. Fig.
4(e) shows the contowr of the kinctic energy obtained by the
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Fig. 4(a) Free surface height (turbuent)
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Fig. 4(c) Velocity vectors (turbulent)
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Fig. 4(d) Volume fraction (turbulent)

Fig. 4(e) Kinetic encrgy comntour

turbulence model of the k- & RNG type.

The flows around hydrofoil close to the free surface is
substantially different from the flow around hydrofoil with large
submergence. Computations were performed at the speed of 1.5
mysec in decp water; in this case, a steady solution was obtained.
The difference in flow paiterns for the two different submergences
arc best illustrated by looking at the profiles of the streamwise
and vertical velocity component along the lines at y= 45 mm
(above hydrofoil) and y= -101 mm (below hydrofoil), from one
chord length ahead to one chord length behind the foil

For the non-breaking waves, the chord length is 203 mm, angle
of attack 5° , the towing velocity 0.8 mysec, submergence depth
210 mm, Froude number based on the foil speed and chord length
is Fr= 0.567. The computations werc performed using four
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sysicmatically refined grids with 1004, 4016, 16064 and 64256
CVs respectively, in order to assess the discretization errors. Fig.
5 shows the wave profiles computed on the four grids using the
mcthod, data
(Duncan®). The difference between solutions on subsequent grids

interface-tracking compared with experimenial
is reducing with grid refinement, indicating convergence towards a
grid-independent solution. The comparison with the experimental
data shows that the grid-independeni numerical solution will still
appreciably differ from cxperimental observation. For the breaking
waves, a seties of computations was conducted using the NACA
0012 hydrofoil with chord length of 1000 mm, submergence depth
of 140 mm (measured from the mid-point on the profile nose).

Fig. 6 shows the velocity vectors and free- surface shapes at four
time instants for the foil speed of 1 myscc. The hydrofoil starts
suddenly moving at full speed; this leads fo a build-up of a very
stecp, but smooth wave just above the trailing edge. This wave
then overturns, as indicated in the top figure of Fig.6. After that,
the breaking region moves slightly forward and remains in the
range between 0.8 and 0.9 chord lengths from the nose. Tn the
initial stage of simulalion, some vortex shedding is observed; later
the flow becomes smooth all around the hydrofoil. Note that the
velocily scale is not the same in all figures, and that in the
breaking region the velocities are very low. The dark- colored
region represents volume fraction around 0.5; where the interface
is sharp, this rcgion is narrow. Large spreading of this region in
the wave-breaking area indicales intensive mixing of waler and air.
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Fig. 5 Freesurfacc profile in the fow around a subsequent
NACAQ0012 hydrofoil computed the inierface method on the four
systematically refined grids, compared to experimental data of
Duncan

4. Concluding Remarks

The numerical results presented demonstrate the capabililies of
intcrface-capturing method to compute flows around submerged
hydrofoils under severc wave-breaking conditions.

Although no cxperimental data is avajlable for the breaking
cases, it is believed that the main fcatures of the free-surface
flows as a function of hydrofoil speed are qualitatively correctly
predicted. Tn particular, the fact that the wave-breaking rcgion

moves towards the trailing edge and beyond as the speed increased
and that the hydraulic-jump conditions are obiained above the
hydrofoil appear plausible. The comparisons of numerical solutions
using interface method with experimental data for the non-breaking
conditions, in spite of the non-perfect agreement, suggest that the
simulation Tesults arc at least qualitatively correet.  Computations
on the substaniially finer grid are in progress and in the future
also the cxperiments will be carricd out to enable quantitative
verification.

Fig. 6 Computed velocity vectors (in a coordinate frame attached io
the foil) and freesurface shapc at four time instanis aboul one
second apart, [or the foil speed of 1.0 mfsec
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