• Title/Summary/Keyword: Frankia

Search Result 19, Processing Time 0.023 seconds

Ectomycorrhizal Effect on Physiological Activities of Water-Stressed Nodulated Alnus rubra Seedlings (외생균근(外生菌根)이 수분결핍(水分缺乏)된 루브라 오리나무 묘목(苗木)의 생리활동(生理活動)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven L.
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Red alder (Alnus rubra Bong.) seedlings inoculated with Frankia pure cultures were grown in a walk-in growth chamber for sixteen weeks. Half were inoculated with the spores of the ectomycorrhizal fungus Alpova diplophloeus (Zeller & Dodge) Trappe & Smith. The mycorrhizal seedlings were significantly larger than nonmycorrhizal plants in diameter, and nodule and shoot dry weight by 6 to 16% when their heights were very similar. The mycorrhizal effects on water relations of red alder seedlings were explored in a 30 hours water stress. Mycorrhizal and nonmycorrhizal seedlings did not significantly differ in leaf water potentials, $CO_2$ exchange rates or $N_2$-fixation rates during the drought. Our results suggests that A. diplophloeus mycorrhizas increased red alder seedling growth under well-watered conditions but do not affect water relations of the plant under water-stress.

  • PDF

Effects of Nitrogen and Phosphorus Fertilization on Ectomycorrhiza Development, N-Fixation and Growth of Red Alder Seedlings (질소(窒素)와 인산(燐酸) 시비(施肥)가 루브라 오리나무(Alnus rubra Bong.) 묘목(苗木)의 외생균근발달(外生菌根發達)과 질소고정(窒素固定) 및 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randolph J.;Miller, Steven L.;Li, Ching Y.
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.96-106
    • /
    • 1996
  • Red alder(Alnus rubra Bong.) seedlings inoculated with Frankia only or both Frankia and spores of Alpova diplophloeus(Zeller & Dodge) Trappe & Smith were grown in a greenhouse for ten weeks. The ten-week-old seedlings were fertilized with six nitrogen(N) and phosphorus(P) fertility regimes (no fertilization, 10mM $NH_4NO_3$, 50mM $NH_4NO_3$, 5mM $KH_2PO_4$, 10mM $NH_4NO_3+5mM$ $KH_2PO_4$, and 50mM $NH_4NO_3+5mM$ $KH_2PO_4$) three times a week for ten weeks. The higher N-fertilization significantly increased mycorrhiza formation by greenhouse contaminant mycorrhizal fungi, but decreased N-fixation and P concentration in nodule tissues. P-fertilization significantly increased nodule and shoot dry weight, and P concentration in plant tissues. When N was highly fertilized, however, the P-fertilization effect disappeared in nodule P concentration but doubled in leaf P concentration. A. diplophloeus inoculation significantly increased diameter growth and $CO_2$ exchange rate, but decreased leaf dry weight. Our results suggest that the higher N- or P-fertilization affect nitrogenase activity and mycorrhizal development but the effects are changed by their interactions.

  • PDF

Studies on the Nitrogen-fixing Symbiosis in Actinorhizal Plants I. Survey of the actinorhizal root nodules and collection the root nodules (목본식물에 있어서 질소고정 공생관계 (Actinorhizal symbiosis)에 관한 연구)

  • 안정선
    • Journal of Plant Biology
    • /
    • v.29 no.2
    • /
    • pp.109-115
    • /
    • 1986
  • Actinorhizal plants being capable of fixing atmospheric nitrogen in symbiotic association with Frankia were surveyed for their root nodules, and the root nodules were collected for further studies. Three species of Alnus and Elaeagnus (A. hirsuta, a. firma, A. japonica; E. glabra, e. umbellata, E. macrophylla) and one species of Myrica (M. rubura) were confirmed to bear the root nodules of typical external shape. Morphological studies using light microscope and scanning electron microscope revealed the presence of vesicle clusters in the cortex region of the root. Two tentative endophyte colonies were isolated from the root nodule of A. hirsuta.

  • PDF

Phamalogical effect and component of sea buckthorn(Hippophae rhamnoides L.) (비타민나무의 약리 효과 및 구성 성분)

  • Kim, Ju-Sung;Yu, Chang-Yeon;Kim, Myong-Jo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • Sea buckthorn (Hippophae rhamnoides L.) is deciduous shrubs in the genus Hippophae, mainly cultivated in Europe and Asia. Sea buckthorn berries have a high vitamin C, vitamin E, carotenoids, carbohydrates, protein, organic acids, dietary minerals, triterpenoids, polyphenolic acids and amino acids. Extracts of sea buckthorn berries have anti- obesity, anti-oxidantive, anti-microbial, anti-ulcerogenic, anti-diabetic and nutritional effects. Sea buckthorn used as a traditional medicine for the treatment of cough, aid digestion, invigorate blood circulation and alleviate pain. Extracts of sea buckthorn branches and leaves was administered to humans and animals to treat gastrointestinal distress in Mongolia. This paper briefly reviews the most relevant experimental data on the pharmacological effects and isolated component of sea buckthorn. And, we also describe the importance of sea buckthorn as the environmental-friendly crops.

Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Bae, Ju Hee;Lim, Jung Dae;Yu, Chang Yeon;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.405-409
    • /
    • 2007
  • A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

Effect of Water Stress on Ectomycorrhizal Development and Growth of Alnus rubra Seedlings (수분 스트레스가 루브라오리나무 묘목의 균근발달과 생장에 미치는 영향)

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven L.;Trappe, James M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.302-309
    • /
    • 2001
  • The effects of water stress on the development of Alpova dipiophloeus ectomycorrhizas and on the growth of nodulated Alnus rubra Bong seedlings were investigated. Five-day cyclic water stress significantly decreased the ectomycorrhizal development and the seedling growth. However, A. diplophloeus inoculated seedlings did not significantly differ from the non-inoculated seedlings in the growth and physiological activities under both well watered and water stressed conditions. $N_2$-fixation was less sensitive than $CO_2$ fixation to water stress. We conclude that under water stress conditions A. diplophloeus mycorrhizas do not contribute to the fitness of red alder seedlings.

  • PDF

Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics

  • Tekaya, Seifeddine Ben;Tipayno, Sherlyn;Chandrasekaran, Murugesan;Yim, Woo-Jong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.593-601
    • /
    • 2012
  • Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to ${\alpha}$ Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.

Effects of Environmental Factors on the Nitrogen Fixation Activity in Elaeagnus umbellata (보리수나무의 질소고정활성에 대한 환경요인의 영향)

  • Song, Seung-Dal;Lee, Kyung-Jin;Park, Tae-Gyu;An, Chung-Sun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 1993
  • The seasonal changes of symbiotic nitrogen-fixation activity and environmental factors of autumn olive plant (Elaeagnus umbellata Thunb.), which is an important constituent species of temperate vegetation and a non-leguminous root nodule plant interacting with Frankia sp., were quantitatively analyzed inthe natural vegetations during hegrowing period. The acetylene redution April and showed two peaks of 133 and $145{\mu}M\;C_2H_4\;{\cdot}\;gfw^{-1}\;{\cdot}\;hr^{-1}$ in early June and mid September. The nitrogenase activity decreased to 10~30% during hot dry summer frommid June to the end of August, and disappeared during the dormant period of winter. The optimum rhizoshere. diurnal change showed the maximum activity in the mid-day and the minimum in the mid-night. The average contents of total nitrogen in each organ changed in the ranges of 42.5~40.1, 40.2~36.3, 30.3~28.6 and 18.4~16.2mgN $gdw^{-1}$ for nodule, leaf, root, and stem, respectively. The soil conditions of rhizosphere were weak acidic, ad seasonal variations of $NO_3^--N,\;NH_4^+-N,\;PO_4^{3-}-P$ and water contents were in the ranges of 48.3~79.5ppm,5.1~13.9ppm, 4.4~$9.9{\mu}M$ and 14.5~39.4%, respectively.

  • PDF