• Title/Summary/Keyword: Frameworks

Search Result 1,245, Processing Time 0.028 seconds

Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method

  • Tiossi, Rodrigo;Falcao-Filho, Hilmo Barreto Leite;De Aguiar, Fabio Afranio Junior;Rodrigues, Renata Cristina Silveira;De Mattos, Maria da Gloria Chiarello;Ribeiro, Ricardo Faria
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.89-92
    • /
    • 2012
  • PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C ($6.43{\pm}3.24{\mu}m$) when compared to Groups A ($16.50{\pm}7.55{\mu}m$) and B ($16.27{\pm}1.71{\mu}m$) ($P$ <.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, $58.66{\pm}14.30{\mu}m$; Group B, $39.48{\pm}12.03{\mu}m$; Group C, $23.13{\pm}8.24{\mu}m$) ($P$ <.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks.

Role of span length in the adaptation of implant-supported cobalt chromium frameworks fabricated by three techniques

  • Zhou, Ying;Li, Yong;Ma, Xiao;Huang, Yiqing;Wang, Jiawei
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.124-129
    • /
    • 2017
  • PURPOSE. This study evaluated the effect of span length on the adaptation of implant-supported cobalt chromium frameworks fabricated by three techniques. MATERIALS AND METHODS. Models with two solid abutment analogs at different inter-abutment distances were digitized using a laboratory scanner. Frameworks of two-, three-, and four-unit fixed prostheses were designed by a computer. Six dots with a diameter of 0.2 mm were preset on the surface of each framework. A total of 54 implant-supported cobalt chromium frameworks were fabricated by milling, selective laser melting (SLM), and cast techniques. The frameworks were scanned and exported as Stereolithography files. Distances between two dots in X, Y, and Z coordinates were measured in both the designed and fabricated frameworks. Marginal gaps between the framework and the abutments were also evaluated by impression replica method. RESULTS. In terms of distance measurement, significant differences were found between three- and four-unit frameworks, as well as between two- and four-unit frameworks prepared by milling technique (P<.05). Significant differences were also noted between two- and three-unit frameworks, as well as between two- and four-unit frameworks prepared by cast technique (P<.05). The milling technique presented smaller differences than the SLM technique, and the SLM technique showed smaller differences than the cast technique at any unit prostheses (P<.05). Evaluation with the impression replica method indicated significant differences among the span lengths for any fabrication method (P<.05), as well as among the fabrication methods at any unit prostheses (P<.05). CONCLUSION. The adaptation of implant-supported cobalt chromium frameworks was affected by the span length and fabrication method.

A Comparative Analysis of Deep Learning Frameworks for Image Learning (이미지 학습을 위한 딥러닝 프레임워크 비교분석)

  • jong-min Kim;Dong-Hwi Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.129-133
    • /
    • 2022
  • Deep learning frameworks are still evolving, and there are various frameworks. Typical deep learning frameworks include TensorFlow, PyTorch, and Keras. The Deepram framework utilizes optimization models in image classification through image learning. In this paper, we use the TensorFlow and PyTorch frameworks, which are most widely used in the deep learning image recognition field, to proceed with image learning, and compare and analyze the results derived in this process to know the optimized framework. was made.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.

Trueness of 3D printed partial denture frameworks: build orientations and support structure density parameters

  • Hussein, Mostafa Omran;Hussein, Lamis Ahmed
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • PURPOSE. The purpose of the study was to assess the influence of build orientations and density of support structures on the trueness of the 3D printed removable partial denture (RPD) frameworks. MATERIALS AND METHODS. A maxillary Kennedy class III and mandibular class I casts were 3D scanned and used to design and produce two 3D virtual models of RPD frameworks. Using digital light processing (DLP) 3D printing, 47 RPD frameworks were fabricated at 3 different build orientations (100, 135 and 150-degree angles) and 2 support structure densities. All frameworks were scanned and 3D compared to the original virtual RPD models by metrology software to check 3D deviations quantitatively and qualitatively. The accuracy data were statistically analyzed using one-way ANOVA for build orientation comparison and independent sample t-test for structure density comparison at (α = .05). Points study analysis targeting RPD components and representative color maps were also studied. RESULTS. The build orientation of 135-degree angle of the maxillary frameworks showed the lowest deviation at the clasp arms of tooth 26 of the 135-degree angle group. The mandibular frameworks with 150-degree angle build orientation showed the least deviation at the rest on tooth 44 and the arm of the I-bar clasp of tooth 45. No significant difference was seen between different support structure densities. CONCLUSION. Build orientation had an influence on the accuracy of the frameworks, especially at a 135-degree angle of maxillary design and 150-degree of mandibular design. The difference in the support's density structure revealed no considerable effect on the accuracy.

The effect of the digital manufacturing technique of cantilevered implant-supported frameworks on abutment screw preload

  • Altuwaijri, Shahad Mohammmed;Alotaibi, Hanan Nejer;Alnassar, Talal Mughaileth
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the misfit and screw preload at the implant abutment connection of implant supported fixed dental prosthesis with cantilever (ICFDP) manufactured using different digital manufacturing techniques and to compare the screw preload before and after cyclic loading. MATERIALS AND METHODS. Mandibular jaw model with four intra-foraminal implants was scanned using digital scanner. Stereolithography file was used to design a framework with nonengaging (NE) abutments and 10 mm cantilever distal to one terminal implant. Five frameworks were constructed using combined digital-conventional techniques (CAD-cast), and five frameworks were constructed using three-dimensional printing (3DP). Additional CAD-cast framework was constructed in a way that ensures passive fit (PF) to use as control. Scanning electron microscope (SEM) measured the implant abutment connection misfit. Sixty screws were used on the corresponding frameworks. Screws were torqued and pre-cyclic loading reverse torque value (RTV) was recorded. Frameworks were subjected to 200,000 loading cycles with a loading point 9 mm from the center of terminal implants adjacent to the cantilever and post-cyclic loading RTVs were recorded. RESULTS. Microscopic readings showed significant differences between frameworks. PF demonstrated the lowest measurements of 16.04 (2.6) ㎛ while CAD-cast demonstrated the highest measurements of 29.2 (3.1) ㎛. In all groups, RTVs were significantly lower than the applied torque. Post-cyclic loading RTV was significantly lower than pre-cyclic loading RTV in PF and 3DP frameworks. Differences in RTVs between the three manufacturing techniques were insignificant. CONCLUSION. Although CAD-cast and three-dimensionally printed (3DP) both produce frameworks with clinically acceptable misfit, 3DP might not be the technique of choice for maintaining screw's preload stability under an aggressive loading situation.

A preliminary Study on Regulatory Frameworks for Consumer Product Safty Policy (소비자상품안전을 위한 규제분석틀에 대한 기초연구)

  • 김용희
    • Journal of Families and Better Life
    • /
    • v.7 no.2
    • /
    • pp.213-223
    • /
    • 1989
  • Decision frameworks for product safty policy are developed in theory and practice. Product characteristic approach and expected utility analysis are applied to situations involving risk and misinformation. Eight types of regulatory frameworks are explained and critiqued form practical purposes on behalf of consumer policy makers. Various international organizations and their roles are briefly reviewed.

  • PDF

A Study on the Bracing Rectangular Frameworks (직사각형 틀 구조물의 견고성 파악하기)

  • Lee, Jaeun;Kwon, Young Soo;Choi, Keunbae
    • Communications of Mathematical Education
    • /
    • v.30 no.2
    • /
    • pp.251-262
    • /
    • 2016
  • In this paper, we investigate the bracing rectangular frameworks problem and provide a new proof of this problem using the angle sequence according to deformed rectangular frameworks in a view of mathematising. And also we provide the algorithm to determine the rigidity of braced rectangular frameworks.

Comparative Study of Evaluating the Trustworthiness of Data Based on Data Provenance

  • Gurjar, Kuldeep;Moon, Yang-Sae
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.234-248
    • /
    • 2016
  • Due to the proliferation of data being exchanged and the increase of dependency on this data for critical decision-making, it has become imperative to ensure the trustworthiness of the data at the receiving end in order to obtain reliable results. Data provenance, the derivation history of data, is a useful tool for evaluating the trustworthiness of data. Various frameworks have been proposed to evaluate the trustworthiness of data based on data provenance. In this paper, we briefly review a history of these frameworks for evaluating the trustworthiness of data and present an overview of some prominent state-of-the-art evaluation frameworks. Moreover, we provide a comparative analysis of two key frameworks by evaluating various aspects in an executional environment. Our analysis points to various open research issues and provides an understanding of the functionalities of the frameworks that are used to evaluate the trustworthiness of data.

Some Characters of Students' Understandings about Tide Concept (조석개념에 대한 학생들의 이해 특성)

  • Kook, Dong-Sik
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.429-436
    • /
    • 1995
  • The purpose of this study is to identify students' alternative frameworks about tide concept, to investigate some characters of them and students' understanding types with increasing grade in secondary school earth science course. The objective questionnaire method was used, and the subjects of this study are 528 students selected randomly in secondary school. The results are as follow. 1) Thirteen alternative frameworks about tide concept, related to the phase change of the moon and the motion of the earth are identified. 2) The alternative frameworks needed mechanical and causal reasoning have the trend reinforced or sophisticated with increasing the grade. And alternative frameworks needed phenomenal and mechanical, phenomenal and causal reasoning are changed little but ones needed phenomenal, variative and basic reasoning change scientifically. The rates of the alternative frameworks needed definitional, empirical, phenomenal reasoning decrease at the learning grade of that concept but increase after that grade. 3) Middle school students have the definitional, phenomenal, empirical and qualitative understanding types but high school students have the causal, analytic, quantitative and mechanical ones on tide concept.

  • PDF