• Title/Summary/Keyword: Framed structures

Search Result 262, Processing Time 0.023 seconds

On Semisimple Representations of the Framed g-loop Quiver

  • Choy, Jaeyoo
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.601-612
    • /
    • 2017
  • Let Q be the frame g-loop quiver, i.e. a generalized ADHM quiver obtained by replacing the two loops into g loops. The vector space M of representations of Q admits an involution ${\ast}$ if orthogonal and symplectic structures on the representation spaces are endowed. We prove equivalence between semisimplicity of representations of the ${\ast}-invariant$ subspace N of M and the orbit-closedness with respect to the natural adjoint action on N. We also explain this equivalence in terms of King's stability [8] and orthogonal decomposition of representations.

승용차 전용 조립식 고가도로의 최적설계 (Optimal Design of Prefabricated Passenger Car-overpass Structures)

  • 조성배;김영우;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.163-170
    • /
    • 2004
  • The main objective of this research is to determine the optimal sections of infrastructure (the pier and foundation) for orthotropic steel decks which is a part of prefabricated passenger car overpasses. Since the bridge to be designed allows only passenger cars, design loads are determined according to this condition. The total volume of the infrastructure is formulated as the objective function and the design constraints are based on the 'Korean Bridge Design Code' and 'Design Manual of Steel Framed Pier'. The programs used in this research are MATLAB 6.5 and MIDAS CIVIL.

  • PDF

반복 하중을 받는 강 구조 부재 및 골조의 탄소성 성상에 관한 해석적 연구 (An analytical Study on the Elasto-Plastic Behaviour of Steel Structure Member & Frame under Cyclic Load)

  • 김화중;권영환;박정민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.52-57
    • /
    • 1992
  • The purpose of this study is that to develop computer program, which is about to analy size nonlinear behaviour of elastic framed structures include to geometric & material nonlineality, and to formulate between stress-strain relationship. In order to examplity the efficiency of this program, a few analytical results have been obtained on : (1) nonlinear behaviour of beam which is subject to vertical force (2) nonlinear behaviour of portal frame which is subject to vertical & horizontal force.

  • PDF

등방성 이력형 강재댐퍼를 이용한 RC 라멘조 아파트건물의 지진응답 개선 (Mitigating Seismic Response of RC Framed Apartment Building Using Isotropic Hysteretic Steel Dampers)

  • 천영수;방종대
    • 토지주택연구
    • /
    • 제5권2호
    • /
    • pp.107-114
    • /
    • 2014
  • 수동형 제진장치를 이용하는 제진구조는 수년간 개발이 지속되고 있으며, 1990년대 중반이후로 여러 나라들에서 실무적인 적용이 빠르게 증가되고 있다. 국내의 경우 이러한 제진장치 중 강재이력형 댐퍼가 비교적 저렴한 비용과 설치와 관리가 용이하다는 이유로 건물의 내진설계를 위하여 보편적으로 많이 적용되고 있다. 이 논문에서는 건물의 지진응답을 개선하기 위하여 적용된 소위 카고메댐퍼로 불리우는 등방성 강재이력형 댐퍼(Isotropic Hysteretic Metallic Damper, IHMD)의 유효성에 대한 해석적인 사례연구를 제시하고 있다. 연구대상 건물은 18층 규모의 철근콘크리트 라멘조 아파트건물로 해석결과를 통하여 IHMD의 실효성을 실증적으로 보여주고 있다. 해석결과는 IHMD가 건물의 지진응답을 줄일 수 있는 매우 효과적인 방법임을 검증하고 있다.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Seismic response of RC frame structures strengthened by reinforced masonry infill panels

  • Massumi, Ali;Mahboubi, Behnam;Ameri, Mohammad Reza
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1435-1452
    • /
    • 2015
  • The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. Experimental observations regarding the influence of infill panels on increasing stiffness and strength of reinforced concrete structures reveal that such panels can be used in order to strengthen reinforced concrete frames. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. In order to determine the acceptance criteria and modeling parameters for frames as well as reinforced masonry panels, the Iranian Guideline for Seismic Rehabilitation of Existing Masonry Buildings (Issue No. 376), the Iranian Guideline for Seismic Rehabilitation of Existing Structures (Issue No. 360) and FEMA Guidelines (FEMA 273 and 356) were used. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

Cyclic tests on bolted steel and composite double-sided beam-to-column joints

  • Dubina, Dan;Ciutina, Adrian Liviu;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.147-160
    • /
    • 2002
  • This paper summarises results of the research performed at the Department of Steel Structures and Structural Mechanics from the "Politehnica" University of Timisoara, Romania, in order to evaluate the performance of beam-to-column extended end plate connections for steel and composite joints. It comprises laboratory tests on steel and composite joints, and numerical modelling of joints, based on tests. Tested joints are double-sided, with structural elements realised of welded steel sections. The columns are of cruciform cross-section, while the beams are of I section. Both monotonic and cyclic loading, symmetrically and antisymmetrically, has been applied. On the basis of tested joints, a refined computer model has been calibrated using a special connection element of the computer code DRAIN 2DX. In this way, a static/dynamic structural analysis of framed structures with real characteristics of the beam to column joints is possible.

Seismic design and elastic-plastic analysis of the hengda group super high-rise office buildings

  • Zhang, Xiaomeng;Ren, Qingying;Liu, Wenting;Yang, Songlin;Zhou, Yilun
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.175-188
    • /
    • 2020
  • The Hengda Group super high-rise building in Jinan City uses the frame-core tube structural system. With a height of 238.3 m, it is above the B-level height limit of 150 m for buildings within 7-magnitude seismic fortification zones. Therefore, it is necessary to apply performance-based seismic design to this super high-rise building. In this study, response spectrum analysis and comparative analysis of the structure are conducted using two software applications. Moreover, elastic time-history analysis, seismic analysis under an intermediate earthquake, and elastic-plastic time-history analysis under rare earthquakes are performed. Based on the analysis results, corresponding strengthening measures are implemented at weaker structural locations, such as corners, wall ends connected to framed girders, and coupling beams connected to framed girders. The failure mode and failure zone of major stress components of the structure under rare earthquakes are analysed. The conclusions to this research demonstrate that weaker locations and important parts of the structure satisfy the requirements for elastic-plastic deformation in the event of rare earthquakes.

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.