• Title/Summary/Keyword: Frame error concealment

Search Result 40, Processing Time 0.027 seconds

Novel Motion Estimation Technique Based Error-Resilient Video Coding (새로운 움직임 예측기법 기반의 에러 내성이 있는 영상 부호화)

  • Hwang, Min-Cheol;Kim, Jun-Hyung;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.108-115
    • /
    • 2009
  • In this paper, we propose a novel true-motion estimation technique supporting efficient frame error concealment for error-resilient video coding. In general, it is important to accurately obtain the true-motion of objects in video sequences for effectively recovering the corrupted frame due to transmission errors. However, the conventional motion estimation (ME) technique, which minimizes a sum of absolute different (SAD) between pixels of the current block and the motion-compensated block, does not always reflect the true-movement of objects. To solve this problem, we introduce a new metric called an absolute difference of motion vectors (ADMV) which is the distance between motion vectors of the current block and its motion-compensated block. The proposed ME method can prevent unreliable motion vectors by minimizing the weighted combination of SAD and ADMV. In addition, the proposed ME method can significantly improve the performance of error concealment at the decoder since error concealment using the ADMV can effectively recover the missing motion vector without any information of the lost frame. Experimental results show that the proposed method provides similar coding efficiency to the conventional ME method and outperforms the existing error-resilient method.

Error Concealment Using Intra-Mode Information Included in H.264/AVC-Coded Bitstream

  • Kim, Dong-Hyung;Jeong, Se-Yoon;Choi, Jin-Soo;Jeon, Gwang-Gil;Kim, Seung-Jong;Jeong, Je-Chang
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.506-515
    • /
    • 2008
  • The H.264/AVC standard has adopted new coding tools such as intra-prediction, variable block size, motion estimation with quarter-pixel-accuracy, loop filter, and so on. The adoption of these tools enables an H.264/AVC-coded bitstream to have more information than was possible with previous standards. In this paper, we propose an effective spatial error concealment method with low complexity in H.264/AVC intra-frame. From information included in an H.264/AVC-coded bitstream, we use prediction modes of intra-blocks to recover a damaged block. This is because the prediction direction in each prediction mode is highly correlated to the edge direction. We first estimate the edge direction of a damaged block using the prediction modes of the intra-blocks adjacent to a damaged block and classify the area inside the damaged block into edge and flat areas. Our method then recovers pixel values in the edge area using edge-directed interpolation, and recovers pixel values in the flat area using weighted interpolation. Simulation results show that the proposed method yields better video quality than conventional approaches.

  • PDF

Channel Error Detwction and Concealment Technqiues for the MPEG-2 Video Standard (MPEG-2 동영상 표준방식에 대한 채널 오차의 검출 및 은폐 기법)

  • 김종원;박종욱;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2563-2578
    • /
    • 1996
  • In this paper, channel error characteristics are investigated to alleviate the channel error propagation problem of the digital TV transmission systems. First, error propagation problems, which are mainly caused by the inter-frame dependancy and variable length coding of the MPEG-2 baseline encoder, are intensively analyzed. Next, existing channel resilient schemes are systematically classified into two kinds of schemes; one for the encoder and the other for the decoder. By comparing the performance and implementation cost, the encoder side schemes, such as error localization, layered coding, error resilience bit stream generation techniques, are described in this paper. Also, in an effort to consider the parcticality of the real transmission situation, an efficient error detection scheme for a decoder system is proposed by employing a priori information of the bit stream syntas, checking the encoding conditions at the encoder stage, and exploiting the statistics of the image itself. Finally, subsequent error concealment technique based on the DCT coefficient recovery algorithm is adopted to evaluate the performance of the proposed error resilience technique. The computer simulation results show that the quality of the received image is significantly improved when the bit error rate is as high as 10$^{-5}$ .

  • PDF

A Boundary Matching and Post-processing Method for the Temporal Error Concealment in H.264/AVC (H.264/AVC의 시간적 오류 은닉을 위한 경계 정합과 후처리 방법)

  • Lee, Jun-Woo;Na, Sang-Il;Won, In-Su;Lim, Dae-Kyu;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1563-1571
    • /
    • 2009
  • In this paper, we propose a new boundary matching method for the temporal error concealment and a post processing algorithm for perceptual quality improvement of the concealed frame. Temporal error concealment is a method that substitutes error blocks with similar blocks from the reference frame. In conventional H.264/AVC standard, it compares outside pixels of erroneous block with inside pixels of reference block to find the most similar block. However, it is very possible that the conventional method substitutes erroneous block with the wrong one because it compares only narrow spatial range of pixels. In this paper, for substituting erroneous blocks with more correct blocks, we propose enhanced boundary matching method by comparing inside and outside pixels of reference block with outside pixels of erroneous block and setting up additional candidate motion vector in the fixed search range based on maximum and minimum value of candidate motion vectors. Furthermore, we propose a post processing method to smooth edges between concealed and decoded blocks without error by using the modified deblocking filter. We identified that the proposed method shows quality improvement of about 0.9dB over the conventional boundary matching methods.

  • PDF

H.264의 FMO Performance Evaluation and Comparison over Packet-Lossy Networks (패킷 손실이 발생하는 네트워크 환경에서의 H.264의 FMO 성능분석과 비교에 관한 연구)

  • Kim Won-Jung;Lim Hye-Sook;Yim Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.490-496
    • /
    • 2006
  • H.264 is the most recent video coding standard, containing improved error resilience tools than previous video compression schemes. This paper shows an analysis of the dependency of error concealment (EC) performance on the expected number of correctly received neighboring macroblock(MB)s for a lost MB, applying error concealment schemes to the raster scan mode that is used in the previous video coding standard and the flexible macroblock ordering (FMO) which is one of error-resilience tools in H.264. We also present simulation results and performance evaluation with various packet loss rates. Simulation results show that the FMO mode provides better EC performances of $1{\sim}9dB$ PSNR improvements compared to the raster scan mode because of larger expected number of correctly received neighboring MBs. The PSNR improvement by FMO mode becomes higher as the intra-frame period is larger and the packet loss rate is higher.

Motion Vector Recovery Based on Optical Flow for Error Concealment (전송 오류를 은닉하기 위한 옵티컬 플로우 기반의 움직임 벡터 복원)

  • Suh, Jae-Won;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.630-640
    • /
    • 2002
  • The compressed video bitstream is very sensitive to transmission errors. If we lost packet or received with errors during the transmission, not only the current frame will be corrupted, but also errors will propagate to succeeding frames. Error concealment is a data recovery technique that enables the decoder to conceal effects of transmission errors by predicting the lost or corrupted video data from the previously reconstructed error free information. Motion vection recovery and motion compensation with the estimated motion vector is a good approach to conceal the corrupted macroblock data. In this paper, we prove that it is reasonable to use the estimated motion vector to conceal the lost macroblock by providing macroblock distortion models. After we propose a new motion vector recovery algorithm based on optical flow fields, we compare its performance to those of conventional error concealment methods. The proposed algorithm has smaller computational complexity than those of conventional algorithms.

Packet Loss Concealment Algorithm Based on Speech Characteristics (음성신호의 특성을 고려한 패킷 손실 은닉 알고리즘)

  • Yoon Sung-Wan;Kang Hong-Goo;Youn Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.691-699
    • /
    • 2006
  • Despite of the in-depth effort to cantrol the variability in IP networks, quality of service (QoS) is still not guaranteed in the IP networks. Thus, it is necessary to deal with the audible artifacts caused by packet lasses. To overcame the packet loss problem, most speech coding standard have their own embedded packet loss concealment (PLC) algorithms which adapt extrapolation methods utilizing the dependency on adjacent frames. Since many low bit rate CELP coders use predictive schemes for increasing coding efficiency, however, error propagation occurs even if single packet is lost. In this paper, we propose an efficient PLC algorithm with consideration about the speech characteristics of lost frames. To design an efficient PLC algorithm, we perform several experiments on investigating the error propagation effect of lost frames of a predictive coder. And then, we summarize the impact of packet loss to the speech characteristics and analyze the importance of the encoded parameters depending on each speech classes. From the result of the experiments, we propose a new PLC algorithm that mainly focuses on reducing the error propagation time. Experimental results show that the performance is much higher than conventional extrapolation methods over various frame erasure rate (FER) conditions. Especially the difference is remarkable in high FER condition.

A Spatial Error Concealment Technique with Low Complexity for Intra-frame in the H.264 Standard (H.264 인트라 프레임을 위한 저복잡도(低複雜度) 공간적 에러은닉 기법)

  • Kim Dong-Hyung;Cho Sang-Hyup;Jeong Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.503-511
    • /
    • 2006
  • H.264 adopts new coding tools such as intra-prediction, loop filter, etc. The adoption of these tools enables an H.264-coded bitstream to have more information compared with previous standards. In this paper we proposed an effective spatial error concealment method for H.264. Among the information included in an H.264-coded bitstream, we use intra-mode for recovering a damaged block. This is because prediction direction in intra-mode is highly correlated to the edge direction of a lost macroblock. We first estimate the edge direction using intra-modes of blocks adjacent to a lost macroblock, and classify the area in a damaged macroblock into the edge and the flat area. And then our method recovers pixel values in the edge area using edge-directed interpolation, and recovers pixel values in the flat area using weighted interpolation. Simulation results show the proposed method yields better video quality than conventional approaches by 0.35 to 5.48 dB.

Improved Error Detection Scheme Using Data Hiding in Motion Vector for H.264/AVC (움직임 벡터의 정보 숨김을 이용한 H.264/AVC의 향상된 오류 검출 방법)

  • Ko, Man-Geun;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • The compression of video data is intended for real-time transmission of band-limited channels. Compressed video bit-streams are very sensitive to transmission error. If we lose packets or receive them with errors during transmission, not only the current frame will be corrupted, but also the error will propagate to succeeding frames due to the spatio-temporal predictive coding structure of sequences. Error detection and concealment is a good approach to reduce the bad influence on the reconstructed visual quality. To increase concealment efficiency, we need to get some more accurate error detection algorithm. In this paper, We hide specific data into the motion vector difference of each macro-block, which is obtained from the procedure of inter prediction mode in H.264/AVC. Then, the location of errors can be detected easily by checking transmitted specific data in decoder. We verified that the proposed algorithm generates good performances in PSNR and subjective visual quality through the computer simulation by H.324M mobile simulation tool.

Advanced Error Tracking Algorithm for H.263 (H.263에 적합한 개선된 에러 트래킹 알고리즘)

  • Hyo-seok Lee;Soo-Mok Jung
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.123-130
    • /
    • 2004
  • In this paper, an advanced error tracking algorithm by using feedback channel was proposed for error resilient transmission. Using this proposed algorithm, the propagation of errors were reduced within the decoded data over bit error prone network. The addresses of corrupted blocks are reported to encoder by decoder. With negative acknowledgments of feedback channel, the encoder can precisely calculate negative acknowledgments and track the propagated errors by examining the backward motion dependency for proper pixel in the current encoding frame. The error-propagation effects can be terminated completely by INTRA refreshing the affected macro-blocks by using proposed error tracking algorithm. By utilizing the selective four-corner error tracking approximation, the error tracking computations of the proposed algorithm is less than that of the algorithm using full pixel without substantial degradation in video quality. The proposed algorithm can track errors rapidly and accurately.

  • PDF