• 제목/요약/키워드: Frame Stress

검색결과 653건 처리시간 0.024초

탈수속도 변화에 따른 세탁기 클러치하우징의 강도해석 (Stress Analysis of the Clutch Housing of a Washing Machine)

  • 김완두;이학주;한승우
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.33-42
    • /
    • 1996
  • The transmission system of a washing machine which is called by the clutch is one of the most important components to preserve the performance. The clutch housing has a role to guard and mount the transmission system on the frame of the machine. The load which is applied on the clutch housing depends on the operating conditions. Nowadays the dehydration speed is higher and higher in order to improve the efficiency. In this study, the strains on the predicted weak positions were measured using the strain gage and its measuring equipment. The relationships between the dehydration speeds and the maximum principal strains were obtained. Finite element analysis is executed to acquire the effect of the dehydration speed on the stress of the clutch housing. The distributions of the equivalent stress and the maximum stresses under the various speeds, the various loading directions and the various thickness of the clutch housing were obtained.

  • PDF

스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구 (An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener)

  • 박성무;김성수;김원호;이형석
    • 한국공간구조학회논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구 (Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load)

  • 이형석;박성무
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

평균골격응력을 이용한 불포화토의 탄-점소성 구성방정식 (Elasto-viscoplastic Constitutive Model of Unsaturated Soil based on Average Skeleton Stress)

  • 김영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1199-1203
    • /
    • 2008
  • It has been recognized that unsaturated soil behavior plays an importantrole in geomechanics. In the last decade several constitutive models have been proposed and used in the analysis. Many of them, however, are constructed in the frame work of rate independent model such as elasto-plastic one. Although rate dependency is an important characteristics of soil for both saturated and unsaturated soils, very few models have been developed taking account of rate dependency. In the present paper, we have developed an elasto-viscoplastic model considering an effect of suction based on the overstress-type viscoplasticity with soil structure degradation. In the model, we have adopted an averaged pore pressure composed of pore water pressure and air pressure to determine the effective stress.

  • PDF

전달(傳達)매트릭스법(法)에 의(依)한 선체특설늑골(船體特設肋骨) 해석(解析) (The Stress Analysis of Web Frame by the Transfer Matrix Method)

  • 임상진;양영순
    • 대한조선학회지
    • /
    • 제12권1호
    • /
    • pp.31-36
    • /
    • 1975
  • As the size of tanker increase, the analysis and strength prediction of the transverse web frames in a tanker have become important problems. Therefore, several papers dicussed the subject and various method of analysis have been presented. Most of these studies are based on the elastic framework analysis. Framework analysis is carried out by the matrix methods. The matrix methods used most frequently are the displacement method, force method and the transfer matrix method. In this paper, the analysis is carried out by the transfer matrix method. The program has been tested by IBM 1130 and the results of example show good agreements with those by the program of stress analysis, STRESS, which was developed in M.I.T.

  • PDF

Equilibrium shape analysis of single layer structure by measure potential function

  • Ijima, Katsushi;Xi, Wei;Goto, Shigeo
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.775-784
    • /
    • 1997
  • A unified theory is presented for the shape analysis of curved surface with a single layer structure composed by frame, membrane or shell. The shapes produced by the theory have no shear stress in elements, and the stress states in the whole shape are as uniform as possible under an ordinary load. The theory starts from defining an element potential function expressed by the measurement of the element length or the element area. Therefore, the shape analysis can produce various forms according to the definition of the potential function, and each of those form or the cable net form with the potential function of the second power of element length is simply gotten by the linear analysis. The form in tensile stress is mechanically equal to an isotropic tension form.

Ultimate load capacity of unit Strarch frames using an explicit numerical method

  • Lee, Kyoungsoo;Hong, Jung-Wuk;Han, Sang-Eul
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.539-560
    • /
    • 2012
  • This study uses an explicit numerical algorithm to evaluate the ultimate load capacity analysis of a unit Strarch frame, accounting for the initial imperfection effects of the stress-erection process. Displacement-based filament beam element and an explicit dynamic relaxation method with kinetic damping are used to achieve the analysis. The section is composed of the finite number of filaments that can be conveniently modeled by various material models. Ramberg-Osgood and bilinear kinematic elastic plastic material models are formulated to analyze the nonlinear material behaviors of filaments. The numerical results obtained in the present study are compared with the results of experiment for stress-erection and buckling of unit Strarch frames.

Confinement effect on the behavior factor of dual reinforced concrete moment-resisting systems with shear walls

  • Alireza Habibi;Mehdi Izadpanah;Yaser Rahmani
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.781-791
    • /
    • 2023
  • Lateral pressure plays a significant role in the stress-strain relationship of compressed concrete. Concrete's internal cracking resistance, ultimate strain, and axial strength are improved by confinement. This phenomenon influences the nonlinear behavior of reinforced concrete columns. Utilizing behavior factors to predict the nonlinear seismic responses of structures is prevalent in seismic codes, and this factor plays a vital role in the seismic responses of structures. This study aims to evaluate the confining action on the behavior factor of reinforced concrete moment resisting frames (RCMRFs) with shear walls (SWRCMRFs). To this end, a diverse range of mid-rise SW-RCMRFs was initially designed based on the Iranian national building code criteria. Second, the stress-strain curve of each element was modeled twice, both with and without the confinement phenomenon. Each frame was then subjected to pushover analysis. Finally, the analytical behavior factors of these frames were computed and compared to the Iranian seismic code behavior factor. The results demonstrate that confining action increased the behavior factors of SW-RCMRFs by 7-12%.

1톤급 상용차 시트 개발에 따른 FMVSS 210 Model 구조 강도 평가 연구 (A Study on the Structural Strength Evaluation for the Development of One-ton Grade Commercial Vehicle Seat Frame for the FMVSS 201 Model)

  • 조규춘;하만호;문홍주;김영곤
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.130-136
    • /
    • 2018
  • This study develops a seat with electric motor technology for a one-ton grade commercial vehicle. While applying electric motor technology, the FMVSS 210 seat frame strength test is also conducted to examine the product's weak parts. The seat frame strength test used the FMVSS 210 test standard and the ANSYS program was used to simulate the test and identify weak parts in the deformation and strain values. The test results showed that the cushion frame and slide rail connection bracket were fractured at loads of about 10,000 N. Similarly, the maximum stress and strain values in the bracket were obtained in the simulation results. On this basis, it was evaluated that the connection part bracket was a considerably weak part in the case of the first model, and changing the shape of the bracket and reinforcing the strength were required. In addition, the seat belt anchorage test results and simulation results were compared to assure their validity. In the comparison results, the error for each is about 5-10%. Therefore, the simulation performed in this study is considered to have produced reasonably accurate results.

철도차량 대차를 피로균열 평가법 연구 (A Study on the Fatigue Crack Evaluation Method of Railway Bogie Frame)

  • 전현규;서정원;이동형;김형진
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.16-24
    • /
    • 2009
  • 선형탄성파괴역학을 적용하여 균열이 발생한 변동하중하의 철도차량 대차틀에 대한 균열성장속도를 예측하였다. 이를 위하여 철도차량 대차틀의 균열발생사례를 분석하여 취약부위를 파악하였으며, 영업노선에서의 실동하중 측정과 구조해석을 통한 정하중 계산으로 대차틀 취약부에서 운행 중 받는 총 하중이력을 생성하였다. 총 하중이력에서 균열닫힘을 고려한 유효하중이력을 계산하였으며, 취약부 3곳에서 균열성장속도를 예측하고 일본에서 측정한 균열진전 사례와 비교하였다. 해석결과 초기길이 40mm의 균열이 급속한 균열성장을 일으키기까지는 약 50만km의 주행거리가 필요하며 이는 약 3.8년의 운행기간에 해당하므로 도시철도의 유지보수기간을 고려하면 임계균열로 도달하기 전에 충분히 감지할 수 있을 것으로 생각된다.