• Title/Summary/Keyword: Frame Stiffness

Search Result 849, Processing Time 0.023 seconds

A Study on the Load and Deformation of Race Carbon Bicycle Frame for Improved Athletic Performance (경기력 향상을 위한 경주용 탄소 자전거 프레임의 하중과 변형에 관한 연구)

  • Choi, Ung Jae;Choi, Seung Ho;Kim, Yong Sun;Yun, Seong Min;Kim, Hong Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2019
  • As the industry develops and quality of life increases, the concept of leisure is also changing. Bicycling is a healthy sport for exercising while enjoying nature, facilitating the enjoyment of a healthy life. As a result, the awareness surrounding bicycles has increased, and so has the interest in lighter and more luxurious carbon bikes. The number of domestic companies producing carbon bicycles frames is nil. In this study, we analyze the frames of existing foreign brands and analyze the deformation and stress concentration area according to the load of the frame, using the finite element analysis. In addition, we set up the range of stiffness based on the content of the structural analysis, to localize the carbon bicycle frame and famous foreign products, and compare the prototype with the stiffness by using bicycle molds for track races.

Seat Model Study for Autonomous Vehicle (자율주행자동차 전용 시트 모델 연구)

  • Seongho, Kim;Subin, Kim;Kyeonghee, Han; Jaeho, Shin;Kyungjin, Kim;Hyung-Jin, Chang;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2022
  • In the development of automated driving, interest in the interior parts of vehicle is to become more significant in terms of the occupant safety and comfort. This study proposed an optimal design of front seat according to the design requirements for frame stiffness and seat comfort. For the seat comfort, the appropriate foam thickness was obtained using the structural analysis under reclined occupant loadings. While the strength and stiffness analyses were performed to evaluate the seat frame structure. Topology optimization was carried out based on the simulation results and the derived optimal model and baseline seat design was updated. The conceptual seat design for the autonomous vehicle in this study showed that the model development process is appropriate for the design parameters in both frame stiffness and seat comfort.

A methodology for design of metallic dampers in retrofit of earthquake-damaged frame

  • Zhang, Chao;Zhou, Yun;Weng, Da G.;Lu, De H.;Wu, Cong X.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.569-588
    • /
    • 2015
  • A comprehensive methodology is proposed for design of metallic dampers in seismic retrofit of earthquake-damaged frame structures. It is assumed that the metallic dampers remain elastic and only provide stiffness during frequent earthquake (i.e., earthquake with a 63% probability of exceedance in 50-year service period), while in precautionary earthquake (i.e., earthquake with a 10% probability of exceedance in 50-year service period), the metallic dampers yield before the main frame and dissipate most of the seismic energy to either prevent or minimize structural damages. Therefore by converting multi-story frame to an equivalent single-degree-of-freedom system, the added stiffness provided by metallic dampers is designed to control elastic story drifts within code-based demand under frequent earthquake, and the added damping with the combination of added stiffness influences is obtained to control structural stress within performance-based target under precautionary earthquake. With the equivalent added damping ratio, the expected damping forces provided by metallic dampers can be calculated to carry out the configuration and design of metallic dampers along with supporting braces. Based on a detailed example for retrofit of an earthquake-damaged reinforced concrete frame by using metallic dampers, the proposed design procedure is demonstrated to be simple and practical, which can not only meet current China's design codes but also be used in retrofit design of earthquake-damaged frame with metallic damper for reaching desirable performance objective.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration (차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구)

  • Sung, Young-Suk;Kang, Min-Seok;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Member capacity of columns with semi-rigid end conditions in Oktalok space frames

  • Zhao, Xiao-Ling;Lim, Peter;Joseph, Paul;Pi, Yong-Lin
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • The Oktalok nodal connection system is an aesthetic and efficient system. It has been widely used throughout Australia. The paper will briefly introduce the concept and application of the Oktalok nodal system. The existing design method is based on the assumption that the joints are pin-ended, i.e., the rotational stiffness of the joints is zero. However the ultimate capacity of the frame may increase significantly depending on the rotational stiffness of the joints. Stiffness tests and finite element simulations were carried out to determine the rotational stiffness of the Oktalok joints. Column buckling tests and non-linear finite element analyses were performed to determine the member capacity of columns with semi-rigid end conditions. A simple formulae for the effective length factor of column buckling is derived based on the above experimental and theoretical investigations.

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Evaluation of Structural Response of Base Isolated Frame Considering Uplift Effect of Isolators (면진장치 들림 효과를 고려한 면진된 골조의 구조 거동 평가)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • After obtaining tensile and compressive stiffness as well as shear stiffness of elastomeric seismic isolator experimentally, those stiffness were modeled analytically using nonlinear computer program. To induce tensile stress due to overturning in the seismic isolators of an isolated frame for horizontal force, free vibration simulations generated by large initial displacement were conducted. Since elastomeric seismic isolator is weak for tensile stress, the axial stiffness of isolators shall be included properly in the analytical model to evaluate the uplift phenomenon of elastomeric seismic isolator.

  • PDF

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

Effect of Increase in Thickness of Gypsum Board Composite Panel on Improvement in Out-of-plane Drywall Stiffness (석고보드 복합패널의 후판화에 따른 면외방향 내력 증대 효과)

  • Shin, Yun-Ho;Ji, Suk-Won;Choi, Soo-kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.14-15
    • /
    • 2019
  • The demand for drywall is increasing as the structural type of apartment building is changing to a rigid frame structure. At present, the thickness of the gypsum board used for drywall is mostly 9.5mm and is required to be changed to 12.5mm to improve the performance of the wall. A structural safety test has been conducted in accordance with KS F 2613 to verify the effect of changing the thickness of the gypsum board to 12.5mm in terms of improvement as to stiffness. As a result of the test, the stiffness of the drywall has increased by about 19.6% and the impact resistance by about 30.4%.

  • PDF