• Title/Summary/Keyword: Fragmentation of Production

Search Result 150, Processing Time 0.033 seconds

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite (키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구)

  • Lee, Chang-Uk;Lee, Hyun-Jung;Kim, Do-Hee;Jang, Yeong-Mi;Lee, Sang-Hyung;Jeong, Yoonh-Wa;Kim, Dae-Jin;Chung, Yoon-Hee;Kim, Kyung-Yong;Kim, Sung-Su;Lee, Won-Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

Production of Clone Animals by Nuclear Transplantation I. Effects of Electrostimulation on Membrane Fusion of Embryos and Activation of Oocytes in Mouse (핵치환에 의한 Clone Animal의 생산에 관한 연구 I. 생쥐 수정란의 세포막 융합과 난모세포의 활성화에 미치는 전기자극의 효과)

  • 이상진;구덕본;이상민;박흠대;정순영;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.217-228
    • /
    • 1994
  • These experiments were carried out to establish the optimal condition of electrostimulatin inducing cell fusion and oocyte activation for nuclear transplantation in mouse embryos. Eggs selected for cell fusion or activation by electrostimulation were equilibrated for 5~10 min. in 0.3M sucrose solution and electrostimulated for 60$\mu$sec using 1 pulse of 60, 70, 80, 90 or 100 volts DC with electrodes 0.2 mm apart. Then they were cultured in 20${mu}ell$ dropsof Tyrode's solution. The results of these experiments are as follows : 1. When one pulse of 60, 70, 80, 90 or 100 volts DC for 60$\mu$sec were applied to 2-cell embryos for fusion of blastomeres, fusion rates were 50.0, 81.7, 91.7, 100 and 100%, respectively ; and developmental rates of fused embryos to blastocyst were 76.7 to 81.5%. Higher fusion rates were observed in 90V and 100V. 2. The average cell number in fused embryos developed to blastocyst was about half of the cell number in diploid controls; and the cell number decreased with increasing of voltages. 3. When pulse numbers were increased, fusion rates improved, but developmental rates were not signficiantly different from the group for which the number of pulse was not increased. And the cell number of blastocyst decreased even more. 4. Oocytes aged for 6hrs after ovulation were electrostimulated for oocyte activation by the same method used for cell fusion. Rates of oocyte activated by electrostimulation were 45.3 to 60.4%, and fragmentation rates were 7.5~15.1%. The lysis rates were 17.0~34.0%. The results of these experiments indicate that the optimal condition for achieving cell fusion and activation is 1 pulse, duration 60$\mu$sec in 90 Volt. The results also show that this condition is suitable for nuclear transplantation using mouse eggs.

  • PDF

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

Quantitative Changes of Collagen and Malonedialdehyde as the Parameters of Skin Alteration (피부노화의 지표가 되는 collagen과 malonedialdehyde의 정량적인 변화)

  • 김기영;이재형;진주영;양시용
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.135-140
    • /
    • 2004
  • Anti-skin aging agent could be have an inhibition effect of ROS production as well as fragmentation and change of collagen cross linkage in collagen molecule. For the monitoring of lipid peroxidation and collagen degradation, the skin of young and old rats were incised and observed 7 days. In the result, the wound closure was observed in the skin from 10 of 11 young rats and in 8 of 11 old rats. And the longer wound length but shorter wound closure, weaker collagen density and thicker epidermis were observed in old rats than in young rats. The level of hydroxyproline as a parameter of collagen synthesis and MDA as a parameter of lipid peroxidation was lower in old group than in young group. The cyst and lacuna between collagen bundle and fibroblast were observed in old rats in contrast to young rats. So that we propose that MDA and hydroxyproline could be used for monitoring of anti-skin aging agent.

The Effect of Irradiation on Meat Products

  • Yea-Ji Kim;Ji Yoon Cha;Tae-Kyung Kim;Jae Hoon Lee;Samooel Jung;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.779-789
    • /
    • 2024
  • The effects of irradiation on meat constituents including water, proteins, and lipids are multifaceted. Irradiation leads to the decomposition of water molecules, resulting in the formation of free radicals that can have both positive and negative effects on meat quality and storage. Although irradiation reduces the number of microorganisms and extends the shelf life of meat by damaging microbial DNA and cell membranes, it can also accelerate the oxidation of lipids and proteins, particularly sulfur-containing amino acids and unsaturated fatty acids. With regard to proteins, irradiation affects both myofibrillar and sarcoplasmic proteins. Myofibrillar proteins, such as actin and myosin, can undergo depolymerization and fragmentation, thereby altering protein solubility and structure. Sarcoplasmic proteins, including myoglobin, undergo structural changes that can alter meat color. Collagen, which is crucial for meat toughness, can undergo an increase in solubility owing to irradiation-induced degradation. The lipid content and composition are also influenced by irradiation, with unsaturated fatty acids being particularly vulnerable to oxidation. This process can lead to changes in the lipid quality and the production of off-odors. However, the effects of irradiation on lipid oxidation may vary depending on factors such as irradiation dose and packaging method. In summary, while irradiation can have beneficial effects, such as microbial reduction and shelf-life extension, it can also lead to changes in meat properties that need to be carefully managed to maintain quality and consumer acceptability.

Effects of red glasswort as sodium chloride substitute on the physicochemical properties of pork loin ham

  • Jeong, Tae-Jun;Kim, Tae-Kyung;Kim, Hyun-Wook;Choi, Yun-Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.662-669
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effect of red glasswort (RG) (Salicornia herbacea L.) curing on the physicochemical, textural and sensory properties of cooked pork loin ham (M. longissimus thoracis et lumborum). Methods: All treatments were cured with different salt and RG powder levels. RG0 treatment was prepared with only 4% NaCl (w/w) as a control, and RG25, 3% NaCl:1% RG (w/w); RG50, 2% NaCl:2% RG (w/w); RG75, 1% NaCl:3% RG (w/w); RG100, 0% NaCl:4% RG (w/w) treatments were prepared sequentially. All samples were individually vacuum packaged in polyethylene bags and stored for 7 d at 3℃±1℃. Results: The results showed that as the rate of RG substitution increased, pH value, redness, myofibrillar protein solubility, and myofibrillar fragmentation index increased (p<0.05), but salt concentration and shear force decreased (p<0.05). However, there were no significant differences in cooking loss and moisture content. In terms of sensory evaluation, RG100 exhibited higher scores in tenderness and juiciness than RG0 (p<0.05). Conclusion: The partial substitution of NaCl by RG could improve the physicochemical properties, textural and sensory characteristics of cooked pork loin. Therefore, it is suggested that RG as a natural salt replacer could be an effective ingredient for developing low-sodium cured hams.

Effects of gold and green kiwifruit juices on the physicochemical properties and tenderness of pork loin and antioxidant activity during incubation (24 h) in a pork model system

  • Haeun Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.908-917
    • /
    • 2024
  • Objective: Although pork loins is not a tough meat, they need to develop meat products with a soft texture for the elderly. This study focused on the physicochemical properties and tenderness characteristics of pork loin injected with green kiwifruit juice (GRJ) and gold kiwifruit juice (GOJ) during various incubation times. In addition, the antioxidant activities of hydrolysate derived from the hydrolysis of pork loin by kiwifruit juice protease were evaluated. Methods: The pork loin was injected with 10% and 20% GRJ and GOJ, under various incubation times (0, 4, 8, and 24 h). Then, the physicochemical properties and tenderness of pork loins were measured. 2,2- diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power were conducted to determine hydrolysate's antioxidant activities derived from pork loin's hydrolysis by kiwifruit juice protease. Results: GRJ had greater tenderizing ability than GOJ, even at the 10% addition. When kiwifruit juice was injected into pork loin, the tenderness increased with increasing incubation time. This was confirmed by the decrease in intensity of the myosin heavy chain (MHC) band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In particular, the MHC band decreased at 8 h for both 10% GRJ and 20% GOJ and at 4 h for 20% GRJ alone. The highest myofibril fragmentation index and peptide solubility were observed in pork loin treated with 20% GRJ compared to the other treatments during incubation. The 10% GRJ and 20% GOJ treatments showed similar levels of antioxidant activity of the protein hydrolysates in pork loin, and 20% GRJ showed the highest activity among the treatments. Conclusion: Kiwifruit juice had protease activity, and GRJ was more useful for tenderizing meat products than GOJ. Thus, GRJ at 10% could be a potential agent to tenderize and enrich the natural antioxidant activity through the proteolysis of pork loin.

Protective effect of Socheongryong-Tang on hydrogen peroxide-induced hepatotoxicity (소청룡탕(小靑龍湯)의 과산화수소로 유도된 간세포 독성에 대한 보호효과)

  • Lee, Ji-Seon;Oh, Su-Young;Seo, Sang-Hee;Kim, Tae-Soo;Ma, Jin-Yeul
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.133-137
    • /
    • 2011
  • Objectives : Socheongryong-Tang (小靑龍湯, SCRT) has been widely used to treat respiratory disease. In this study, we investigated the protective effects of SCRT on hydrogen peroxide-induced hepatotoxicity. Methods : In the mouse primary liver cells, SCRT was pretreated for 1 h, and 1 mM $H_2O_2$ was treated to mouse primary liver cells. Cell viability was analyzed by using 3- 4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Also, the activity of AST, ALT and LDH were measured for the evaluation the protective effect of SCRT on $H_2O_2$-induced hepatotoxicity. Intracellular ROS level was analyzed by FACS. Results : SCRT pretreatment decreased $H_2O_2$-induced hepatotoxicity and intracellular ROS production. Pretreatment of SCRT significantly reduced the cytotoxic effect induced by $H_2O_2$, associated with reducing DNA fragmentation and AST, ALT, LDH activities. Conclusions : These results suggest that SCRT has protective effect against $H_2O_2$-induced hepatotoxicity.

Studies on phosphorus deficiency in the Qianbei-Pockmarked goat

  • Shen, Xiaoyun;Chi, Yongkuan;Huo, Bin;Xiong, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.896-903
    • /
    • 2019
  • Objective: Qianbei-Pockmarked goats are affected by a disorder locally referred to as 'Ruanguzheng Disorder', which is characterized by emaciation, lameness, muscular relaxation, stiffness of the extremities, and abnormal curvatures of the long bones. Our objective was to determine the relationship between the disorder and phosphorus deficiency. Methods: Tissue samples were collected from affected and healthy animals, while soil and herbage samples were collected from affected and healthy pastures. Biochemical parameters were determined using an automatic biochemical analyzer (OLYMPUS AU 640, Olympus Optical Co., Tokyo, Japan). Mineral contents in soil, forage, and tissue were determined using a Perkin-Elmer AAS5000 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, USA). Results: The results showed that phosphorus contents in herbages from affected pastures were markedly lower than those from healthy areas (p<0.01), and the ratio of calcium to phosphorus in the affected herbages was 12.93:1. The phosphorus contents of wool, blood, tooth, and bone from affected animals were also markedly lower than those from healthy animals (p<0.01). Serum phosphorus values in affected animals were much lower than those in healthy animals, while serum alkaline phosphatase values from affected animals were markedly higher than those from healthy animals (p<0.01). Inorganic phosphorus values from affected animals were approximately half of that in the control group. Supplementation of disodium hydrogen phosphate prevented and cured the disorder. Conclusion: This study demonstrates that Ruanguzheng disorder in Qianbei-Pockmarked goats is primarily caused by phosphorus deficiencies in herbage due to fenced pastures and natural habitat fragmentation.