• Title/Summary/Keyword: Fracture structure

Search Result 943, Processing Time 0.04 seconds

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.

Evaluation of the course of the inferior alveolar canal in the mandibular ramus using cone beam computed tomography

  • Kwon, Kyung-Hwan;Sim, Kyu-Bong;Lee, Jae-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.231-239
    • /
    • 2012
  • Objectives: This study sought to provide guidelines in order to decrease the incidence of nerve injury during mandibular ramus bone harvesting, and to improve understanding of the anatomical structure of the inferior alveolar canal (IAC) to include its distance from the exterior buccal cortex. Materials and Methods: In January and February 2009, 20 patients who visited the Wonkwang University Department of Oral and Maxillofacial Surgery reporting various conditions underwent cone beam computed tomography and were included in this study. Patients with missing left or right mandibular first molars or incisors, or who had jaw fracture or bone pathologies, were excluded. The reference point (R point) was defined as the point where the occlusal plane reached the anterior ramus of the mandible. The position of the IAC in relation to the R point, the buccal bone width (BW), the alveolar crest distance (ACD), the distance from the alveolar crest to the occlusal plane (COD), and the distance from the IAC to the sagittal plane (CS) were determined using proprietary image analysis software which produced cross-sectional coronal and axial images. Results: The distance medially from the R point to the IAC along the axial plane was $6.19{\pm}1.21mm$. The HD from the R point, posteriorly to IAC, in the lateral view was $13.07{\pm}2.45mm$, the VD from the R point was $14.24{\pm}2.41mm$, and the ND from the R point was $10.12{\pm}1.76mm$. The pathway of the IAC was positioned almost in a straight line along a sagittal plane within $0.56{\pm}0.70mm$. The distance from the buccal bone surface to the IAC increased anteriorly from the R point. Conclusion: Marking osteotomy lines in the retromolar area in procedures involving bone harvesting should be discouraged due to the risk of damage to IAC structures. Our measurements indicated that the area from the R point in the ramus of the mandible to 10 mm anterior can be safely harvested for bone grafting purposes.

Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire (온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan;Shin, Yeong-Soo;Choi, Eun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.283-292
    • /
    • 2007
  • A research projects is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete frame structures, exposed to fire. As part of this, reinforced concrete frames subjected to fire loads were analyzed using the nonlinear finite-element program DIANA. Two numerical steps are incorporated in this program. The first step carries out the nonlinear transient heat flow analysis associated with fire and the second step predicts the structural behavior of reinforced concrete frames subjected to the thermal histories predicted by first step. The complex features of structural behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. A concrete material model based on nonlinear fracture mechanics to take cracking into account and plasticity models for concrete in compression and reinforcement steel were used. The material and analytical models developed in this paper are verified against the experimental data on simple reinforced concrete beams. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

Emergency bleeding control in a mentally retarded patient with active oral and maxillofacial bleeding injuries: report of a case (구강악안면 손상 후 과도한 출혈을 보인 정신지체 응급환자에서 신속지혈 예: 증례보고)

  • Mo, Dong-Yup;Yoo, Jae-Ha;Choi, Byung-Ho;Sul, Sung-Han;Kim, Ha-Rang;Lee, Chun-Ui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.303-308
    • /
    • 2010
  • Excessive oral and maxillofacial bleeding causes upper airway obstruction, bronchotracheal and gastric aspiration and hypovolemic shock. Therefore, the rapid and correct bleeding control is very important for saving lives in the emergency room. Despite the conventional bleeding control methods of wiring (jaw fracture, wound suture and direct pressure), continuous bleeding can occur due to the presence of various bleeding disorders. There are five main causes for excessive bleeding disorders in the clinical phase; (1) vascular wall alteration (infection, scurvy etc.), (2) disorders of platelet function (3) thrombocytopenic purpura (4) inherited disorders of coagulation, and (5) acquired disorders of coagulation (liver disease, anticoagulant drug etc.). In particular, infections can alter the structure and function of the vascular wall to a point at which the patient may have a clinical bleeding problem due to vessel engorgement and erosion. Wound infection is a frequent cause of postoperative active bleeding. To prevent postoperative bleeding, early infection control using a wound suture with proper drainage establishment is very important, particularly in the active bleeding sites in a contaminated emergency room. This is a case report of a rational bleeding control method by rapid wiring, wound suture with drainage of a rubber strip & iodoform gauze and wet gauze packing, in a 26-year-old male cerebral palsy patient with active oral and maxillofacial bleeding injuries caused by a traffic accident.

Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress (잔류응력을 고려한 압연강 용접구조물의 X-ray 회절법에 의한 파괴 역학적 고찰)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1179-1185
    • /
    • 2011
  • Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ${\Delta}P-N_f$ relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints.

Ag Impregnated HAp Coatings on Alumina Substrate by IBAD and Its Biological Test (IBAD를 이용하여 알루미나 위에 HAp를 Coating하는 연구와 이의 항균력 시험)

  • Park, Eui-Seo;Kim, Taik-Nam;Yim, Hyuk-Jun;Kim, Yun-Jong;Hwang, Deuk-Soo;Kim, Jung-Woo;Kim, Sun-Ok
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.181-187
    • /
    • 1998
  • Hydroxyapatite was used as implant materials, because it has a good biocompatibility and is similar to human bone. However it is not expected to have a high strength as implant materials because of a low fracture strength after sintering of HAp. Alumina ($\alpha$-alumina) shows a stable chemical properties and high strength in physiological environments. Thus it was tried to use a HAp coatings on Alumina substrate as implant materials. In this study, HAp was coated on Alumina substrate by lon Beam Assisted Deposition(IBAD). Then Ag was impregnated on HAp coating layer, which showed antimicrobial effects. To carry out the ion exchange of $Ag^+$ with $Ca^{2+}$ in HAp on the surface, HAp coated alumina substrate was immersed in 20ppm, 100ppm $AgNO_3$ solution at room temperature for 48 hours. Antimicrobial test was studied by using bacteria, which normally caused periprosthetic infections. The follwing bacteria was used in antimicrobial test. Escherichia coli, Pseudomonas aeruginosa (gram negative) and staphylococcus epidermidis (gram positive). Ag impregnated HAp shows very good antimicrobial effects against these bacteria. The surface structure of sample, which was treated in $AgNO_3$ solution was studied by SEM, XRD. Ag release curve was studied in Simulated Body Fluid (SBF) solution.

  • PDF

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum (발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석)

  • Sun, Hong-Peng;Cheon, Seong S.;Cho, Jae-Ung
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.248-253
    • /
    • 2014
  • In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.

Shock Metamorphism of Plagioclase-maskelynite in the Lunar Meteorite Mount DeWitt 12007 (달운석 Mount DeWitt 12007의 마스컬리나이트 충격 변성 특성 연구)

  • Kim, Hyun Na;Park, Changkun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.131-139
    • /
    • 2016
  • Detailed knowledge on maskelynite, a glassy phase of plagioclase found in shocked meteorites and impact craters, is essential to understand a shock metamorphism. Here, we explore an inhomogeneous shock metamorphism in the lunar meteorite Mount DeWitt (DEW) 12007 with an aim to understand the formation mechanism of maskelynite. Most plagioclase grains in the DEW 12007 partially amorphized into maskelynite with a unidirectional orientation. Back-scattered electron (BSE) images of maskelynite show a remnant of planar deformation fracture possibly indicating that the maskelynite would be formed by solid-state transformation(i.e., diaplectic glass). Plagioclase with flow texture is also observed along the rim of maskelynite, which would be a result of recrystallization of melted plagioclase. Results of Raman experiments suggest that shock pressure for plagioclase and maskelynite in the DEW 12007 is approximately 5-32 GPa and 26-45 GPa, respectively. The difference in shock pressures between plagioclase and maskelynite can be originated from 1) external factors such as inhomogeneous shock pressure and/or 2) internal factors such as chemical composition and porosity of rock. Unfortunately, Raman spectroscopy has a limitation in revealing the detailed atomic structure of maskelynite such as development of six- or five-coordinated aluminum atom upon various shock pressure. Further studies using nuclear magnetic resonance spectroscopy are necessary to understand the formation mechanism of maskelynite under high pressure.

Histopathologic Changes of Articular Cartilage and Subchondral Bone in Cylindrical Biopsy Specimen from Talar Osteochondral Lesions (거골의 골연골 병변의 원주형 생검에서 관절 연골과 연골하 골의 조직병리학적 변화)

  • Lee, Ho-Seong;Jang, Jae-Suk;Lee, Jong-Suk;Cho, Kyung-Ja;Lee, Sang-Hoon;Jung, Hong-Keun;Kim, Yong-Min
    • Journal of Korean Foot and Ankle Society
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • Purpose: This study was aimed at elucidating the pathogenesis of talar osteochondral lesion by analyzing the histopathological findings. Materials and Methods: Twenty specimens from 20 patients who underwent surgical treatment for talus osteochondral lesions were studied. Preoperative MRI images including T1, T2, and stir images were taken and cases were classified according to modification of the Anderson's classification. There were 5 cases of MRI group 1, 6 cases of group 2, 7 cases of group 3 and 2 cases of group 4. A full thickness osteochondral plug including the osteochondral lesion of the talus was harvested from each patient and reviewed histopathologic changes of osteochondral fragment using H-E staining. Mean diameter of specimens was 8.5 mm and mean depth was 10.3 mm. Pathologic changes of articular cartilage and subchondral bone were observed. Subchondral bone was divided into superficial, middle and deep zones according to depth. Cartilage formation, trabecular thickening and marrow fibrosis were observed in each zone. Results: There were detachment of the joint cartilage at the tidemark in 16 cases of 20 cases and the separated cartilages were almost necrotic on the histopathologic findings. Cartilage formation within subchondral bone was discovered beneath the tidemark in 12 cases. Trabeculae were increased and thickened in 17 cases. These pathologic changes were similar to fracture healing process and these findings were more conspicuous near the tidemark and showed transition to normal bone marrow tissue with depth. No correlation between the pathological progression and MRI stages was found. A large cyst shown on MRI's was microscopically turned out to be multiple micro-cysts accompanied by fibrovascular structure and newly formed cartilage tissue. Conclusion: The histopathologic findings of osteochondral lesions are detachment of overlying cartilage at the tidemark and subsequent changes of subchondral bone. Subchondral bone changes are summarized as cartilage formation, marrow fibrosis and trabecular thickening that mean healing process following repeated micro fractures of trabecular. These osteochondral lesions should have differed from osteochondral fractures.

  • PDF

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF