• Title/Summary/Keyword: Fracture simulation

Search Result 504, Processing Time 0.026 seconds

Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes (방사성폐기물 지하처분장에 대한 가상의 사례 연구를 위한 KURT 부지의 지하수 유동 모의)

  • Ko, Nak-Youl;Park, Kyung Woo;Kim, Kyung Su;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2012
  • Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum (발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석)

  • Sun, Hong-Peng;Cheon, Seong S.;Cho, Jae-Ung
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.248-253
    • /
    • 2014
  • In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures (비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석)

  • Lee, Tae Hee;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.215-226
    • /
    • 2022
  • Significant efforts have been devoted to developing high-performance composite materials by emulating the structure of biological creatures with superior mechanical characteristics. Nacre has been one of the most sought-after natural structures due to its exceptional fracture toughness compared with the constituent materials. However, the effect of manipulating the nacre-like geometry on the impact performance has not been fully investigated thus far. In this study, composites of randomly manipulated nacreous geometry are numerically developed and the impact performance is analyzed. We develop an algorithm by which the planar area of platelets in the nacre-like design is randomly resized. Thereafter, the numerical models of nonuniform nacre-patterned multi-layer structures are developed and the drop-weight impact simulation is performed. The impact behaviors of the model are evaluated by using the ratio of absorbed energy, the von Mises stress distribution, and the impact force-time curve. Therefore, the effect of the geometric irregularity on the nacre-patterned design is elucidated. This insight can be efficiently utilized in establishing the optimum design of the nacre-patterned structure.

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

Analyses of Scenarios Based on a Leakage of Highly Compressed Air and Fire Anticipated in CAES (Compressed Air Energy Storage) Facility (압축공기에너지저장 시설에서 발생 가능한 압축공기 유출 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.568-576
    • /
    • 2015
  • In this study, scenarios based on the leakage of highly compressed air and fire occurrence turned out to be high risks in an operation stage of CAES facility were constructed and estimated. By combining Bernoulli equation with momentum equation, an expression to calculate an impact force of a jet flow of compressed air was derived. An impact force was found to be proportional to the square of diameter of fracture and the pressure of compressed air. Four types of fire scenarios were composed to evaluate an effects that seasonal change and location of fire source have on the spread behavior of smoke. Smoke from the fire ignited in the vicinity of CAES opening descended more quickly below the limit line of breathing than one from the fire occurred 10 m away from CAES opening, which is expected to occur due to a propagation of wave front of smoke. It was shown that a rate of smoke spread of the winter fire is faster than one of the summer fire and smoke from the winter fire spreads farther than one of the summer fire, which are dependent on the direction of air flow into access opening. Evacuation simulation indicated that the required safe evacuation time(RSET) of the summer and winter fires are 262, 670 s each.

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.