• Title/Summary/Keyword: Fracture roughness

Search Result 189, Processing Time 0.023 seconds

Shape Design of Adhesive Joints for Strength Improvement of Epoxy Adhesive Structures (에폭시 접착제 접합구조물의 강도향상을 위한 접착부 형상설계)

  • Seo, Do-Won;Kim, Hyo-Jin;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.783-790
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5 mm/min. As a result, the load-displacement distribution was shown a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

Fatigue Crack Propagation Behavior of Fine Grained Al-5083 Alloy Produced by Severe Plastic Deformation (강소성법을 이용한 미세립 Al-5083 합금의 피로균열전파 거동)

  • Kim, Ho-Kyung;Yang, Kyoung-Tak;Kim, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.15-21
    • /
    • 2007
  • Fine grained Al-5083 alloy produced by equal channel angular pressing (ECAP) at $120^{\circ}C$ was tested for investigating mechanical properties and crack growth propagation behavior. Also, FEM stress and strain analysis for the samples during ECAP were investigated, using a plastic deformation analysis software DEFORM 2-D. Coarse grained as-received samples exhibited UTS of 255.6MPa with a elongation to failure of 34.4%. By contrast, the ECAPed fine grained samples exhibited UTS of 362.0MPa with a elongation to failure of 12.9%. Fatigue crack growth resistance and threshold of fine grained samples were lower than that of as-received coarse grained samples. The higher fatigue crack growth rate in the fine grained ECAPed samples may partially arise from small roughness closure effect due to smoother fracture surfaces.

The effect and stability of Retinyl Palmitate(RP) in W/O, W/S, O/W, MLV(Multilamellar Vesicles) cream (W/O, W/S, O/W, MLV(Multilamellar Vesicles) TYPE에서 Retinyl Palmitate(RP)의 열적 안정성과 효능, 효과에 관한 연구)

  • 지홍근;서봉석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.1
    • /
    • pp.40-59
    • /
    • 1996
  • Retinyl Palmitate, the skin normalzer, is useful to promote greater skin elasticity, to diminish lipid peroxidation and skin roughness following UV exposure, and promote a youthfull general skin appearance. We knew that the reduction of retinyl palmitate in W/O, W/S, O/W, MLV cream was caused by variable compound factors. Among the retinoids, we chose retinyl palmitate and studied the stability behavior of retinyl palmitate is liposomed. Furthermore, HPLC, CHROMA METERS, LASER SIGHT SCATTERING SYSTEM and FREEZE FRACTURE SCANNING ELECTROM MICROSCOPY was used to analyzing the stability and efficacy of UV and heat.

  • PDF

Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying (대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성)

  • Lee, Illjoo;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

Heat treatment effect on Mechanical property in SM45C (AISI1045) steel (구조용 중탄소강 SM45C의 열처리에 따른 기계적 성질변화)

  • Jun, Sang-Jo;Lee, Im-Kyun;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.33-38
    • /
    • 1986
  • The aim of this study is to find out the relationships between the microstructures of SM45C(AISI1045) steel and fatigue crack propagation behaviour. Three microstructures such as (i) as received (fully annealed). (ii) water quenched and tempered, and (iii) oil quenched and tempered were used for fundamental mechanical testing and fatigue crack proagation test. The microstructures of (ii) and (iii) showed superior in tensile strength to (i). Resistance against fatigue crack propagation was higher in structure (i), while tensile properties were better in structures (ii) and (iii). It is believed due to that the enhancement of roughness of fracture surface obsered in structure (i) increases ${\Delta}Kth$ and lowers fatigue crack growth rate. However it does not necessarily mean the quenched and tempered structures (ii) and (iii) are undesirable for the engineering component because fatigue limit in low cycle test appears usually higher in the microstructures of higher strength.

  • PDF

Study on Grinding Force and Ground Surface of Ferrite (페라이트의 연삭저항 및 연삭면 특성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

A Study on the Plasma Nitriding Application for the Durability Improvement of the Exhaust Decoupler (배기계 디커플러의 내구 향상을 위한 플라즈마 질화에 관한 연구)

  • Hur, Deog-Jae;Kim, Sang-Sik;Chung, Tae-Jin;Kim, Do-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • This paper described the process of improving durability performance of the exhaust decoupler by the plasma nitriding. The properties of plasma nitriding treatment of AIS1304 stainless steel were tested using specimens before applying plasma nitriding to a mesh ring. In order to analyses the effect of plasma nitriding treatment on the mechanical properties, SEM(Scanning Electron Microscopes), roughness and hardness tester were used. Based on specimen plasma nitriding, we could find appropriate condition for application to the mesh ring of decoupler. To confirm the improved durability performance, we compared the number of cycles, which reaches to fracture, of the nitrided decoupler and that of the unnitrided decoupler by the bending cyclic test. In this test, the durability and wear resistance of the mesh ring are significantly improved by plasma nitriding treatment.

The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle (차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • 박경동;김영대;김형자
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature (저온 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • Park, Keyung-Dong;Ha, Keyung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF