Browse > Article

Fatigue Crack Propagation Behavior of Fine Grained Al-5083 Alloy Produced by Severe Plastic Deformation  

Kim, Ho-Kyung (Department of Automotive Engineering, Seoul National University of Technology)
Yang, Kyoung-Tak (Graduate School, Seoul National University of Technology)
Kim, Hyun-Jun (Graduate School, Seoul National University of Technology)
Publication Information
Journal of the Korean Society of Safety / v.22, no.2, 2007 , pp. 15-21 More about this Journal
Abstract
Fine grained Al-5083 alloy produced by equal channel angular pressing (ECAP) at $120^{\circ}C$ was tested for investigating mechanical properties and crack growth propagation behavior. Also, FEM stress and strain analysis for the samples during ECAP were investigated, using a plastic deformation analysis software DEFORM 2-D. Coarse grained as-received samples exhibited UTS of 255.6MPa with a elongation to failure of 34.4%. By contrast, the ECAPed fine grained samples exhibited UTS of 362.0MPa with a elongation to failure of 12.9%. Fatigue crack growth resistance and threshold of fine grained samples were lower than that of as-received coarse grained samples. The higher fatigue crack growth rate in the fine grained ECAPed samples may partially arise from small roughness closure effect due to smoother fracture surfaces.
Keywords
5083-Al alloy; fine-grained microstructure; FEM simulation; fatigue crack growth rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.L. Semiatin, D.P. DeLo, 'Equal channel angular extrusion of difficult-to-work alloys' Mater. & Designs, Vol. 21, pp. 311-322, 2000   DOI   ScienceOn
2 M.K. Rabinovich, M.V. Markushev, 'Influence of fine grained structure and superplastic deformation on the strength of aluminum alloys', J. Mater. Sci. Vol. 30, pp. 4692-4702, 1995   DOI
3 Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, 'Microstructural characteristics of ultrafine-grained aluminum produced using equalchannel angular pressing' Met. & Mater. Trans. A, Vol. 29A, pp. 2245-2252, 1998
4 ASTM E647-93: Standard test method for measurement of fatigue crack growth rates
5 V. Patlan, A. Vinogradov, K. Higashi, K. Kitagawa, 'Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing' Mater. Sci. Eng. A Vol. 300, pp. 171- 182, 2001   DOI   ScienceOn
6 DEFORM2D, Scientific Forming Technologies Corporation
7 S.R. Agnew, J.R. Weertman, 'Cyclic softening of ultrafine grain copper' Mater. Sci. Eng. A, Vol. 244, pp. 145-153, 1998   DOI   ScienceOn
8 A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe, 'Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing', Nano Struct. Mater. Vol. 11 No. 7, pp. 925-934, 1999   DOI   ScienceOn
9 M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, 'Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size' Acta Metall. et Mater., Vol. 44, pp. 4619-4629, 1996   DOI   ScienceOn
10 V.M.. Segal, 'Materials processing by simple shear', Mater. Sci. Eng. A, Vol. 197, pp. 157-164, 1995   DOI   ScienceOn
11 S.R. Agnew, A. Vinogradov, S. Hashimoto, J.R.. Weertman, 'Overview of fatigue performance of Cu processed by severe plastic deformation', J. Electronic. Mater. Vol. 28, No. 9, pp. 1038-1044, 1999   DOI
12 D.H. Shin, K.H. Oh, W.J. Kim, S.W. Lee, W.Y. Choo, 'ECAP강가공에 의한 0.15%C강의 결정립 미세화', 대한금속학회지, Vol. 37, pp. 1048- 1054, 1999
13 M. Mabuchi, H. Iwasaki, K. Yanase, K. Higash, 'Low temperature superplasticity in an AZ91 magnesium alloy produced by ECAE' Scripta Mater., Vol. 36, No. 6, pp. 681-686, 1997   DOI   ScienceOn
14 S.K. Jha, K.S. Ravichandran, 'Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy' Met. & Mater. Trans. A, Vol.3 1A, pp. 703-714, 2000