• 제목/요약/키워드: Fracture reduction

검색결과 1,060건 처리시간 0.026초

바나듐과 몰리브덴이 첨가된 고규소 구상흑연주철의 고온특성 (High Temperature Properties of Vanadium and Molybdenum Added High Silicon Ductile Iron)

  • 박흥일;정해용
    • 한국주조공학회지
    • /
    • 제27권5호
    • /
    • pp.203-208
    • /
    • 2007
  • The high temperature properties of vanadium and molybdenum added high silicon ductile iron, so called V-Mo-Si ductile iron, were investigated. The (V,Mo) complex carbides and Mo carbides precipitated at the cellular boundaries of the as-cast specimens. The microhardness of the (V,Mo) carbides were in the range of 553-619, while that of the Mo carbides in the range of 341-390. The thermo-mechanical tests were carried out with a Gleeble system at 700 and $800^{\circ}C$ under vacuum condition. The tensile strengths of the specimen tested at $700^{\circ}C$ with the dynamic deformation rate of 50 mm/sec and those with the static deformation rate of 0.15 mm/sec were 235.7 and 115.3 MPa, while the reduction in area were 23.7 and 22.4%, respectively. At the high dynamic deformation rates, the tensile strength was steeply increased due to promoting the brittle fracture of pearlite in the matrix of the specimens. But the changes of the reduction in area with the deformation rates on the same specimens were negligible. The weight gain of the V-Mo-Si specimens oxidized in the air atmosphere for 6 hours at 800 and $900^{\circ}C$ were 1.1 and 4.1.%, respectively. The cross-sectional microstructure of oxidized specimens consisted of the porous external scale layer grown outside from the original surface, the dense internal scale layer grown into the original surface, the decarburized ferrite layer between the internal scale and the matrix of base metal. The (V,Mo) carbides and Mo carbides formed in the matrix of as-cast specimen did not decompose during oxidation at 900 for 24 hours in air atmosphere.

Delayed Orbital Hemorrhage around Alloplastic Implants after Blowout Fracture Reduction

  • Ryu, Yong Ah;Park, Jae Beom;Kyung, Hyun Woo;Song, Seung Han;Kang, Nak Heon
    • 대한두개안면성형외과학회지
    • /
    • 제16권1호
    • /
    • pp.35-38
    • /
    • 2015
  • Alloplastic implants have been used to repair orbital wall fractures in most cases. Orbital hemorrhage is a rare complication of these implants and has been reported rarely in Korea. The purpose of this article is to report a late complication case focusing on their etiology and management. A 20-year-old male patient underwent open reduction with Medpor (porous polyethylene) insertion for bilateral orbital floor fractures. The initial symptom occurred with proptosis in the right side as well as vertical dystopia, which had started 4 days earlier, 8 months after surgery. Any trauma history after the surgery was not present. We performed an exploration and removal of hematoma with Medpor titanium meshed alloplastic implant. A case of delayed orbital hematoma following alloplastic implant insertion was identified. It occurred within the pseudocapsule of the implant. One week after surgery, overall symptoms improved successfully, and no complications were reported during the 11-month follow-up period. Although rare, orbital hemorrhage is a potential complication of alloplastic orbital floor implants, which may present many years after surgery. As in the case presented, delayed hematoma should be included in the differential diagnosis of late proptosis or orbital dystopia.

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Impact of Screw Type on Kyphotic Deformity Correction after Spine Fracture Fixation: Cannulated versus Solid Pedicle Screw

  • Arbash, Mahmood Ali;Parambathkandi, Ashik Mohsin;Baco, Abdul Moeen;Alhammoud, Abduljabbar
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1053-1059
    • /
    • 2018
  • Study Design: Retrospective review. Purpose: To detect the effect of cannulated (poly-axial head) and solid (mono-axial head) screws on the local kyphotic angle, vertebral body height, and superior and inferior angles between the screw and the rod in the surgical management of thoracolumbar fractures. Overview of Literature: Biomechanics studies showed that the ultimate load, yield strength, and cycles to failure were significantly lower with cannulated (poly-axial head) pedicle comparing to solid core (mono-axial head). Methods: The medical charts of patients with thoracolumbar fractures who underwent pedicle screw fixation with cannulated or solid pedicle screws were retrospectively reviewed; the subjects were followed up from January 2011 to December 2015. Results: Total 178 patients (average age, $36.1{\pm}12.4years$; men, 142 [84.3%]; women, 28 [15.7%]) with thoracolumbar fractures who underwent surgery and were followed up at Hamad Medical Corporation were classified, based on the screw type as those with cannulated screws and those with solid screws. The most commonly affected level was L1, followed by L2 and D12. Surgical correction of the local kyphotic angle was significantly different in the groups; however, there was no significant difference in the loss of correction of the local kyphotic angle of the groups. Surgical correction of the reduction in the vertebral body height showed statistical significance, while the average loss of correction in the reduction of the vertebral body height was not significantly different. The measurement of the angles made by the screws on the rods was not significantly different between the cannulated (poly-axial head) and solid (mono-axial head) screw groups. Conclusions: Solid screws were superior in terms of providing increased correction of the kyphotic angle and height of the fractured vertebra than the cannulated screws; however, no difference was noted between the screws in the maintenance of the superior and inferior angles of the screw with the rod.

Effect of object position in the field of view and application of a metal artifact reduction algorithm on the detection of vertical root fractures on cone-beam computed tomography scans: An in vitro study

  • Nikbin, Ava;Kajan, Zahra Dalili;Taramsari, Mehran;Khosravifard, Negar
    • Imaging Science in Dentistry
    • /
    • 제48권4호
    • /
    • pp.245-254
    • /
    • 2018
  • Purpose: To assess the effects of object position in the field of view (FOV) and application of a metal artifact reduction (MAR) algorithm on the diagnostic accuracy of cone-beam computed tomography (CBCT) for the detection of vertical root fractures(VRFs). Materials and Methods: Sixty human single-canal premolars received root canal treatment. VRFs were induced in 30 endodontically treated teeth. The teeth were then divided into 4 groups, with 2 groups receiving metal posts and the remaining 2 only having an empty post space. The roots from different groups were mounted in a phantom made of cow rib bone, and CBCT scans were obtained for the 4 different groups. Three observers evaluated the images independently. Results: The highest frequency of correct diagnoses of VRFs was obtained with the object positioned centrally in the FOV, using the MAR algorithm. Peripheral positioning of the object without the MAR algorithm yielded the highest sensitivity for the first observer (66.7%). For the second and third observers, a central position improved sensitivity, with or without the MAR algorithm. In the presence of metal posts, central positioning of the object in the FOV significantly increased the diagnostic sensitivity and accuracy compared to peripheral positioning. Conclusion: Diagnostic accuracy was higher with central positioning than with peripheral positioning, irrespective of whether the MAR algorithm was applied. However, the effect of the MAR algorithm was more significant with central positioning than with peripheral positioning of the object in the FOV. The clinical experience and expertise of the observers may serve as a confounder in this respect.

Versatile midfacial degloving approach in oral and maxillofacial surgery

  • Anunay, Pangarikar;Umamaheswari, G.;Prachi, Parab;Suresh, Kumar;Devarathnamma, M.V.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제45권4호
    • /
    • pp.192-198
    • /
    • 2019
  • Objectives: Oral and maxillofacial surgeons must gain mastery of various approaches to the midface due to the increasing incidence, complexity, and severity of presenting midfacial fractures. Unlike in the case of other body parts, the need to preserve facial aesthetics makes it more difficult for the surgeon to select an approach for managing the facial injuries. The midfacial degloving (MFD) approach is a combination of intraoral and intranasal incisions made to access the midface without any external incision. The aim of the present study was to evaluate the efficacy of MFD in maxillofacial surgery and to assess its advantages and complications. Materials and Methods: The MFD approach was used in five cases, with three cases treated with open reduction and internal fixation and two cases operated on for posttraumatic deformity. Nasal dorsum augmentation was completed in three cases and nasal osteotomy was performed in one case. The bicoronal flap technique was combined with MFD for frontal bone augmentation in one case. The intraoperative time required for flap completion and the ease of performing the planned procedures were noted. Postoperative evaluation was done for reduction, aesthetics, function, and complications. Results: Access was excellent for performing all planned procedures. Average time spent for flap elevation and exposure of the midface was 63 minutes. Complications like postoperative swelling, infraorbital nerve paresthesia, and intranasal crusting were all transient. No long-term complications like stenosis of the nose, sneer deformity, or weakness of the facial muscles were noticed. Additionally, no complications were noted when MFD was combined with bicoronal flap. Conclusion: Though the MFD approach is technically demanding and takes more time than other facial approaches, it should be learned and applied by maxillofacial surgeons in selective cases, as it provides complete exposure of the midface without facial scarring.

Influence of CBCT metal artifact reduction on vertical radicular fracture detection

  • Oliveira, Mariana Rodrigues;Sousa, Thiago Oliveira;Caetano, Aline Ferreira;de Paiva, Rogerio Ribeiro;Valladares-Neto, Jose;Yamamoto-Silva, Fernanda Paula;Silva, Maria Alves Garcia
    • Imaging Science in Dentistry
    • /
    • 제51권1호
    • /
    • pp.55-62
    • /
    • 2021
  • Purpose: This study evaluated the influence of a metal artifact reduction (MAR) tool in a cone-beam computed tomography (CBCT) device on the diagnosis of vertical root fractures (VRFs) in teeth with different root filling materials. Materials and Methods: Forty-five extracted human premolars were classified into three subgroups; 1) no filling; 2) gutta-percha; and 3) metallic post. CBCT images were acquired using an Orthopantomograph 300 unit with and without a MAR tool. Subsequently, the same teeth were fractured, and new CBCT scans were obtained with and without MAR. Two oral radiologists evaluated the images regarding the presence or absence of VRF. Receiver operating characteristic (ROC) curves and diagnostic tests were performed. Results: The overall area under the curve values were 0.695 for CBCT with MAR and 0.789 for CBCT without MAR. The MAR tool negatively influenced the overall diagnosis of VRFs in all tested subgroups, with lower accuracy (0.45-0.72), sensitivity (0.6-0.67), and specificity (0.23-0.8) than were found for the images without MAR. In the latter group, the accuracy, sensitivity, and specificity values were 0.68-0.77, 0.67-083, and 0.53-087, respectively. However, no significant difference was found between images with and without MAR for the no filling and gutta-percha subgroups (P>0.05). In the metallic post subgroup, CBCT showed a significant difference according to MAR use (P<0.05). Conclusion: The OP 300 MAR tool negatively influenced the detection of VRFs in teeth with no root canal filling, gutta-percha, or metallic posts. Teeth with metallic posts suffered the most from the negative impact of MAR.

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

Utility of three-dimensional printing in the surgical management of intra-articular distal humerus fractures: a systematic review and meta-analysis of randomized controlled trials

  • Vishnu Baburaj;Sandeep Patel;Vishal Kumar;Siddhartha Sharma;Mandeep Singh Dhillon
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74-19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45-60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes.

안와내벽파열골절의 내시경적 사골동내 충전에 따른 안와용적 변화 (Orbital Volume Change Resulted from Packing in Ethmoidal Sinus for Correction of Isolated Medial Orbital Fractures)

  • 김경훈;최수종;강철욱;배용찬;남수봉
    • 대한두개안면성형외과학회지
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the medial orbital fractures cannot be enable to confirm the reduction degree of orbital volume without imaging modalities. We have intended through this study to make a quantative analysis of preoperative orbital volume increment and the reduction degree of that after ethmoidal sinus packing by using CT scan. Methods: In this retrospective study, 22 patients were selected to evaluate the postoperative volume reduction, who took 2 CT scans which are pre- and postoperative under the same protocol. The postoperative CT scan was carried out in about 5 days after the operation with the packing inserted into ethmoidal sinus. The length of bony defect on each section was measured by PACS program and the area of defect was calculated by summing lengths on each section multiplied by the thickness of the section. When the outline of orbit on the slice is drawn manually with a cursor, PACS program measures the area automatically. Orbital volume was calculated from the sum of the area multiplied by the section thickness. Results: The mean dimension of fractured walls was $2.86{\pm}0.99cm^2$. The mean orbital volume of the unaffected orbits was $22.89{\pm}2.15cm^3$ and that of the affected orbits was $25.62{\pm}2.82cm^3$. The mean orbital volume increment of the affected orbits was $2.73{\pm}1.13cm^3$. After surgery, the mean orbital volume of the unaffected orbits was $22.46{\pm}2.73cm^3$ and the mean orbital volume decrease on the surgical side was $2.98{\pm}1.07cm^3$. The estimated correction rate was 118.30%. Conclusion: The orbital volume increment in fractured orbit showed linear correlation with the dimension of fractured area. The orbital volume changes after ethmoidal sinus packing also showed linear correlation with orbital volume increment in fractured orbit. This study showed the regressive linear correlation between the increment of orbital volume and the correction rate. To evaluate the maintenance of reduction state, we think that the further study should be done for comparative analysis of orbital volume change after removal of packing.