• 제목/요약/키워드: Fracture behaviour

검색결과 204건 처리시간 0.028초

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

SUS 304 강의 크리프 온도역에 있어서 피로균열성장거동에 관한 연구 (A Study on Fatigue Crack Growth Behavior at a Creep Temperature Region in SUS 304 Stainless Steel)

  • 주원식;오세욱;조석수
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.548-554
    • /
    • 1994
  • The high temperature fatigue crack growth behavior of SUS 304 stainless steel at $550^{\circ}C$ and $650^{\circ}C$ was investigated under various kinds of stress ratio and frequency in sinusoidal waveform on the basis of the non-linear fracture mechanics. The result arranging crack growth rate by modified J-integral J' showed influence of stress ratio and frequency. All the data obtained under the test at $550^{\circ}C$ were plotted within data band of da/dN-${\triangle}J_f$ relationship for cycle-dependent crack growth. On the basis of static creep and cycle-dependent data band; both time- and cycle-dependent crack growth behavior was observed under loading conditions at $650^{\circ}C$, but cycle-dependent crack growth behavior predominantly appeared and time-dependent crack growth behaviour was little observed under loading conditions at $550^{\circ}C$. Fractographic examinations for fracture surface indicated that the fracture mode was generally transgranular. The stripes were found on fracture surface and each stripe was accompanied by a crack tip blunting and an abrupt increase in the load-point displacement. The $J'_{an}$ had a validity in case of $650^{\circ}C, but scarcely had it in case of $550^{\circ}C$.

고력 알루미늄 합금의 파괴특성에 관한 시효처리의 영향 (Effect of Aging Treatment on Fracture Characteristics of High Strength Al-Alloy)

  • 문창권;오세규
    • 수산해양기술연구
    • /
    • 제20권1호
    • /
    • pp.23-29
    • /
    • 1984
  • 고역알루미늄합금의 파괴특성에 미치는 시효열처리의 영향에 대하여 검토한 결과는 다음과 같다. 1. 현미경 조직의 관찰결과 $190^{\circ}C,$ 12hr로 시효열처리한 것이 시효강화된 양호한 조직과 미세한 석출분포를 나타내고 있음을 알 수 있었다. 2. 계단식시효열처리에 의하여 정상시효열처리보다 시효시간을 반정도로 단축시킬 수 있었고, 이들 조직도 유사하였다. 3. 인장파단면의 SEM 전자현미경 사진관찰결과는 $190^{\circ}C,$ 12hr으로 시효열처리한 것은 딤플형 입계 및 입내연성파괴를 나타내나, 이를 제외한 대부분은 시효열처리 시간과 온도에는 관계없이 입계연성파괴인 것이 관찰되었다.

  • PDF

22Cr 마이크로 듀플렉스 스테인리스강의 변형유기마르텐사이트에 미치는 Ni과 Mn의 영향 (Effect of Ni and Mn on Strain Induced Martensite Behavior of 22Cr Micro-Duplex Stainless steel)

  • 박준영;김기엽;안용식
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.122-129
    • /
    • 2013
  • The microstructure and deformation behavior in 22Cr-0.2N micro-duplex stainless steels with various Ni and Mn contents were compared using by OM, TEM, and XRD. The 22Cr-0.2N duplex stainless steel plates were fabricated and hot rolled, followed by annealing treatment at the temperature range of $1,000-1,100^{\circ}C$. All the samples showed the common strain hardening behaviour during the tensile test at a room temperature. The steels tested at the temperatures of $-30^{\circ}C$ or $-50^{\circ}C$ showed a distinct inflection point in the stress-strain curves, which should be resulted from the formation of strain-induced martensite(SIM) of austenite phase. This was confirmed by TEM observations. The onset strain of a inflection point in a stress-strain curve should be depended up the value of $M_d30$. With the decrease of the tensile test temperature, the inflection point appeared earlier, and the strength and fracture strain were higher. The tensile behaviour was discussed from the point of austenite stability of the micro-duplex stainless steels with the different Ni and Mn content.

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

성토재료의 필터링 조건이 사면 안정에 미치는 기초연구 (A Fundamental Study on Slope Stability Due to Filtering Condition of Embankment Material During Rain)

  • 김상환;김학문;신종호;고동필
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.419-426
    • /
    • 2008
  • Recently, localized heavy rain due to "EL-LIO" was a kind of reason by risk of slope stability. In this paper, the behaviour of slope when localized heavy rain was studied. In order to perform this study experimental programs were performed. Experimental programs was checked filtering conditions for slope stability due to localized heavy rain. And then, investigated slope stability and fracture mechanism each other types. In the experimental study, performed changing filtering condition by embankment, through five fixing factors such as rainfall intensity, slope shape, geological condition, compaction energy and water content. According to the results of this study, behaviour of facture slope has made a shallow and narrow waterway. This waterway expanded base stone. In order to, suggested a system for slope stability examination.

  • PDF

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen;Jayadeep, U.B.;Madhavan Pillai, T.M.
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.23-37
    • /
    • 2010
  • Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.