• Title/Summary/Keyword: Fracture Test

Search Result 2,765, Processing Time 0.024 seconds

Effect of Paint Baking on the Strength and Failure of Spot Welds for 780 TRIP Steels (780 MPa급 TRIP강의 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Son, Jong-Woo;Nam, Dae-Geun;Kim, Dong-Cheol;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.66-73
    • /
    • 2010
  • Conventional fracture test of resistance spot weld had been performed without consideration of paint baking process in automobile manufacturing line. This study was aim to investigate the effect of paint baking on fracture mode and load carrying capacity in fracture test for resistance spot welded 780TRIP steels. With paint baking cycle after resistance spot welds, peel tests and microhardness were conducted on the as-welded and baked samples. Resistance spot welds in AHSS (Advanced High Strength Steels) are prone to display partial interfacial fractures during fracture test or vehicle crash. Baking cycle increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial to full button fracture for the L-type peel tests. Specially, the differences in fracture appearance are apparent when the nugget size of spot welds is small enough to produce the partial interfacial fracture. The comparison of macrohardness and microstructure between as-welded and baked samples showed that there are no large difference in change the fracture mode. However, the results of the instrumented indentation test suggested that fusion zone and HAZ of baked sample have less tensile and yield strength and proves that the tempering effects are applied and enhanced the resistance to fracture on welds with application of baking cycle.

Effects of Specimen Thickness and Notch Shape on Fracture Mode Appearing in Drop Weight Tear Test (DWTT) Specimens of API X70 and X80 Linepipe Steels (API X70 및 X80 라인파이프강의 DWTT 시편 파괴 형태에 미치는 시편 두께와 노치 형태의 영향)

  • Hong, Seokmin;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.705-716
    • /
    • 2010
  • Effects of specimen thickness and notch shape on fracture mode appearing in drop weight tear test (DWTT) specimens of API X70 and X80 linepipe steels were investigated. Detailed microstructural analysis of fractured DWTT specimens showed that the fractures were initiated in normal cleavage mode near the specimen notch, and that some separations were observed at the center of the fracture surfaces. The Chevron-notch (CN) DWTT specimens had broader normal cleavage surfaces than the pressed-notch (PN) DWTT specimens. Larger inverse fracture surfaces appeared in the PN DWTT specimens because of the higher fracture initiation energy at the notch and the higher strain hardening in the hammer-impacted region. The number and length of separations were larger in the CN DWTT specimens than in the PN DWTT specimens, and increased with increasing specimen thickness due to the plane strain condition effect. As the test temperature decreased, the tendency to separations increased, but separations were not found when the cleavage fracture prevailed at very low temperatures. The DWTT test results, such as upper shelf energy and energy transition temperature, were discussed in relation with microstructures and fracture modes including cleavage fracture, shear fracture, inverse fracture, and separations.

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

A Study on Advanced Small Punch Test for Evaluation of Fracture Strength in Heat Resisting Stell Weldment (내열강 용접부의 파괴강도 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;권일현;유효선
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.99-99
    • /
    • 2002
  • In order to evaluate the proper fracture strength of microstructures in a steel weldment, smaller size loading ball than used for a conventional small punch(CSP) testing is required due to regional limitation on constitutive structures. In this study, the minimized loading ball(φ 1.5mm) and bore diameter of lower die(φ 3mm) were designed for an advanced small punch(ASP) test. The results obtained from the ASP test were compared with those from a CSP testing for a X20CrMoV121 steel weldment. It was found that the ASP test clearly showed the microstructural dependance on fracture strength and ductile-brittle transition behavior of the weldment. In the ASP test, especially, the cracks tend to initiate for various directions within hemispherical indentation region of an objective structure in SP test. This indicates that the evaluation of more proper fracture strength for F.L+CGHAZ, FGHAZ and ICHAZ can be performed by means of the ASP test in a steel weldment.

A Study on Advanced Small Punch Test for Evaluation of Fracture Strength in Beat Resisting Steel Weldment (내열강 용접부의 파괴강도 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;권일현;유효선
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • In order to evaluate the proper fracture strength of microstructures in a steel weldment, smaller size loading ball than used for a conventional small punch(CSP) testing is required due to regional limitation on constitutive structures. In this study, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for an advanced small punch(ASP) test. The results obtained from the ASP test were compared with those from a CSP testing for a X20CrMoV121 steel weldment. It was found that the ASP test clearly showed the microstructural dependance on fracture strength and ductile-brittle transition behavior of the weldment. In the ASP test, especially, the cracks tend to initiate for various directions within hemispherical indentation region of an objective structure in SP test. This indicates that the evaluation of more proper fracture strength for F.L+CGHAZ, FGHAZ and ICHAZ can be performed by means of the ASP test in a steel weldment.

A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test (3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구)

  • 조병완;박승국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures (소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측)

  • Jae Yoon Kim;Ki Wan Seo;Yun Jae Kim;Ki Seok Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.

An Experimental Study on Mode ll Fracture Toughness Determination of Rock (암석의 전단 파괴인성 측정에 관한 실험적 연구)

  • 윤정석;전석원
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • This study presents a newly suggested test method of Mode II fracture toughness measurement called "Punch Through Shear Test" which was originally proposed by Backers and Stephansson in 2001. The purpose of this study is to check the validity of the suggested testing method by performing Mode II fracture toughness tests for Daejeon Granite. In addition, the optimal specimen geometry for the testing and the relation between Mode II fracture toughness and confining pressure were also investigated. Fractured surface was observed to be very smooth with lots of rock debris which came off fracture surface which obviously implies that the surface was sheared off. This confirms that Mode II fracturing actually occurred. In addition, numerical analyses including continuum analysis, particle flow code analysis and crack propagation simulations were performed. Results of these numerical analyses indicated that the cracks occurred in the specimen were predominantly in Mode II and these cracks led to failure of the test specimen. From this investigation, it can be concluded that the newly suggested "Punch Through Shear Test" method provides a reliable means of determining the Mode II fracture toughness. fracture toughness.

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.