• Title/Summary/Keyword: Fracture Mirror

Search Result 18, Processing Time 0.018 seconds

Rapid Prototyping and Reverse Engineering Application for Orthopedic Surgery Planning

  • Ahn Dong-Gyu;Lee Jun-Young;Yang Dong-Yol
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • This paper describes rapid prototyping (RP) and reverse engineering (RE) application for orthopedic surgery planning to improve the efficiency and accuracy of the orthopedic surgery. Using the symmetrical characteristics of the human body, CAD data of undamaged bone of the injured area are generated from a mirror transformation of undamaged bone data for the uninjured area. The physical model before the injury is manufactured from Poly jet RP process. The surgical plan, including the selection of the proper implant, pre-forming of the implant and decision of fixation positions, etc., is determined by a physical simulation using the physical model. In order to examine the applicability and efficiency of the surgical planning technology, two case studies, such as a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are carried out. From the results of the examination, it has been shown that the RP and RE can be applied to orthopedic surgical planning and can be an efficient surgical tool.

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

Investigation into the Development of Technology for Orthopeadic Surgery Utilizing Reverse Engineering and Rapid Prototyping Technology (역공학과 쾌속조형공정을 이용한 정형외과수술기법 개발에 관한 연구)

  • 안동규;이준영;양동열;한길영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.188-196
    • /
    • 2004
  • The objective of this paper is to propose a new technology of the orthopaedic surgery using the combination of reverse engineering (RE) based on CT data and rapid prototyping (RP). The proposed technology utilizes symmetrical characteristics of the human body and capability of the combination of RE and RP, which rapidly manufactures three-dimensional parts from CT data. The original .stl data of injured extents are generated from the mirror transformation of .stl file fur uninjured extents. The physical shape before injuring is manufactured from RP using the original .stl data. Subsequently, pre-operative planning, such as a selection of proper implants, preforming of the implant, a decision of fixation locations and an insert position for the implant, an estimation of the invasive size, and pre-education of operators are performed using the physical shape. In order to examine the applicability and the efficiency of the proposed surgical technology, various case studies, such as a distal tibia commented fracture, a proximal tibia plateau fracture and an iliac wing fracture of pelvis, are carried out. From the results of case studies, it has been shown that the proposed technology is an effective surgical tool of the orthopaedic surgery reducing the operational time, the operational cost, the radiation exposure of the patient and operators, and morbidity. In addition, the proposed technology could improve the accuracy of operation and the speed of rehabilitation.

Effective Reconstruction of Extensive Orbital Floor Fractures Using Rapid Prototyping Model (신속 조형 모델을 이용한 안와바닥 골절 정복술)

  • Kim, Hye-Young;Oh, Deuk-Young;Lee, Woo-Sung;Moon, Suk-Ho;Seo, Je-Won;Lee, Jung-Ho;Rhie, Jong-Won;Ahn, Sang-Tae
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.633-638
    • /
    • 2010
  • Purpose: Orbital bone is one of the most complex bones in the human body. When the patient has a fracture of the orbital bone, it is difficult for the surgeon to restore the fractured orbital bone to normal anatomic curvature because the orbital bone has complex curvature. We developed a rapid prototyping model based on a mirror image of the patient's 3D-CT (3 dimensional computed tomography) for accurate reduction of the fractured orbital wall. Methods: A total of 7 cases of large orbital wall fracture recieved absorbable plate prefabrication using rapid prototyping model during surgery and had the manufactured plate inserted in the fracture site. Results: There was no significant postoperative complication. One patient had persistent diplopia, but it was resolved completely after 5 weeks. Enophthalmos was improved in all patients. Conclusion: With long term follow-up, this new method of orbital wall reduction proved to be accurate, efficient and cost-effective, and we recommend this method for difficult large orbital wall fracture operations.

Analytical Methodology and Design Consideration of Advanced Test Structure for the Micromechanical Characteristics of MEMS device (초소형 박막구조물의 기계적 특성 평가소자 설계 및 분석 기법)

  • Lee, Se-Ho;Park, Byung-Woo;kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1010-1013
    • /
    • 1998
  • In micromechanical system (MEMS) such as microactuators. thin film has been widely used as structural material. MEMS materials have difference with bulk in terms of mechanical properties. So, we design the advanced test structure for micromechanical properties of MEMS. The designed structure includes the newly developed pre-crack and it is driven by electrostatic force. To measure the fracture toughness, the pre-crack formation in the test structure is developed with conventional etching process. The advanced test structure is fabricated by application of semiconductor technology. After this, we propose analytical methodology to evaluate the fracture toughness and fatigue properties through a prediction of crack behavior from the variations of stiffness and frequency. Additionally, life time of a mirror plane used in DVD(Digital Video Disk) is measured as a function of capacitance and applied voltage under the accelerated conditions. Ultimately, we propose the method to evaluate the micromechanical reliabilities of the MEMS materials using the advanced test structure.

  • PDF

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

The Study on Improvement of Thermal Stress Breakage in Infrared Transmissive Glass for Aircraft Searchlight (항공기용 탐조등 적외선 투과 유리의 열응력 파손 현상 개선 연구)

  • Seo, Young-Jin;Jeong, Sang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.332-337
    • /
    • 2018
  • Aircraft searchlights are used in search or rescue missions when performing night missions, and provide infrared light to keep operations in concealment. During aircraft operation, the infrared ray transmission filter glass for generating infrared rays can break, resulting in problems such as loss of concealment ability and maintenance. In this paper, we describe the procedure for testing the operating conditions of the searchlight when the defect occurs and finding the cause of the defect. We also summarize various methods to improve the cause and process of making the improved filter prototype. In addition, we also describe the results of verifying the performance requirements of the searchlight. As a result of the test and verification, the damage of the filter was improved and the improved filter was applied to the aircraft.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.