• Title/Summary/Keyword: Fracture Limit

Search Result 336, Processing Time 0.028 seconds

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Corelationship between Interfacial Fracture Toughness and Mechanical Properties of Concrete (계면파괴인성과 콘크리트 역학적 성질의 상관관계)

  • 이광명;안기석;이회근;김태근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The interfacial zone in concrete materials is extensive, geometrically complex, and constitutes inherently weak zones that limit the concrete performance. Motar-aggregate interfaces play a major role in the fracture processing in concrete composites. Also, the interfacial bond considerably influence mechanical properties of concrete such as modulus of elasticity, strength, and fracture energy, Characterization of the interfacial properties is, therefore, essential to overcome the limitations associated with the interfaces. an objective of this paper is to investigate the corelationship between the fracture toughness of mortar-aggregate interface and the concrete properties such as strengths and elastic moduli. It is observed from the test results that interface fracture toughness is closely related with the compressive strength rather than other properties. At early ages, the development of both tensile strength and elastic modulus are much greater thatn that of both interface fracture toughness and compressive strength.

  • PDF

Fracture Behavior Evalustion of Pipes with Local Wall Thinning (감육배관의 파괴거동 평가)

  • Ahn, S.H.;Nam, K.W.;Kim, S.J.;Kim, H.S.;Kim, J.H.;Do, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.61-66
    • /
    • 2001
  • Fracture behaviors of pipes with local wall thinning is very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe drosion-corrosion damage. However, effect of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, ovalization+cracking, local buckling and local buckling+cracking. Also, maximum load was successfully evaluated.

  • PDF

Bursting Failure Prediction in Tube Hydroforming Process (튜브 액압성형 공정에서의 터짐 현상 예측)

  • Kim, Jeong;Lei, Liping;Kang, Sung-Jong;Kang, Beom-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.160-169
    • /
    • 2001
  • To predict busting failure in tubular hydroforming, the criteria for ductile fracture proposed by Oyane is combined with the finite element method. From the histories of stress and strain in each element obtained from finite element analysis, the fracture initiation site is predicted by mean of the criterion. The prediction by the ductile fracture criterion is applied to three hydroforming processes such as a tee extrusion, an automobile rear axle housing and lower am. For these products, the ductile fracture integral I is not only affected by the process parameters, but also by preforming processes. All the simulation results show the combination of the finite element analysis and the ductile fracture criteria is useful in the prediction of farming limit in hydroforming processes.

  • PDF

Evaluation of Shape Parameter Effect on the J-R Curve of Curved CT Specimen Using Limit Load Method (한계하중법을 이용한 Curved CT 시험편의 파괴저항곡선에 미치는 형상변수 영향 평가)

  • Shin, In Hwan;Park, Chi Yong;Seok, Chang Sung;Koo, Jae Mean
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.757-764
    • /
    • 2014
  • In this study, the effect of shape parameters on the J-R curves of curved CT specimens was evaluated using the limit load method. Fracture toughness tests considering the shape factors L/W and $R_m/t$ of the specimens were also performed. Thereafter, the J-R curves of the curved CT specimens were compared using the J-integral equation proposed in the ASTM (American Society for Testing and Materials) and limit load solution. The J-R curves of the curved CT specimens were also compared with those of the CWP (curved wide plate), which is regarded to be similar to real pipe and standard specimens. Finally, the effectiveness of the J-R curve of each curved CT specimen was evaluated. The results of this study can be used for assessing the applicability of curved CT specimens in the accurate evaluation of the fracture toughness of real pipes.

The Forming Limit of Flange in the Radial Extrusion (레이디얼 압출에서 플랜지의 성형한계)

  • 고병두;장동환;최호준;임중연;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh C.S.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.