• Title/Summary/Keyword: Fracture Characteristic

Search Result 335, Processing Time 0.033 seconds

Evaluation of Fracture Resistance Characteristic for Primary Piping System of Ulchin 3,4 Nuclear Power Plants (울진 원자력 발전소 3, 4호기 1차계통 배관소재의 파괴저항특성 평가)

  • 석창성;강병구;김수용;박재실;윤병곤
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 CL.1a carbon steel, TP347 stainless steel and their associated welds manufactured for primary coolant system of Ulchin 3,4 nuclear power plants. The effect of various parameters such as pipe size, welding method, chemical composition, crack plane orientation, metallography and fractography on the material properties were discussed. Test results showed that the effect of pipe size on fracture toughness is negligible while the effect of welding method on fracture toughness is significant. In addition, the drop of fracture toughness in the field fabrication weld of TP347 stainless steel is probably due to the large amount of $\sigma$-phase precipitated on the $\delta$-ferrite boundary and the large size dimples.

  • PDF

Fracture Mechanics Characteristics of Wheel Materials for High Speed Train (고속철도용 차륜재의 파괴 역학적 특성)

  • Kwon S.J.;Seo J.W.;Hur H.M.;Kwon S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.20-23
    • /
    • 2005
  • The service demands of railway vehicles have become severe in recent years due to a general increase in operating speeds. It is very important to evaluate the fracture mechanics characteristics with respect to high-speed train wheel. In the present study, fracture mechanics characterization tests were carried out in accordance with various wheel materials. The result shows that fracture mechanics characteristic should be considered in the design code of the wheel materials.

  • PDF

Dynamic Fracture Testing of Welding part of Nuclear Piping by Using Normalization Method (정규화법을 이용한 원전배관 용접부의 동하중 파괴저항시험)

  • Huh, Yong;Cho, Sung-Keun;Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.262-267
    • /
    • 2004
  • The unloading compliance method is the most commonly used method to evaluate the fracture resistance characteristics of a material. In dynamic loading condition, the direct current potential drop(DCPD) method has been used because the unloading compliance method can not be applied due to the discontinuity of loading. However, even in the dynamic test using DCPD method, there is a problem that the voltage drops sharply on the initiation of crack. For the reason metioned above, the normalization method was suggested on ASTM E 1820 which is revised recently, as a new method to evaluate the dynamic fracture resistance characteristic. The nomalization method can be used to obtain a fracture resistance curve directly from a load-load line displacement. In this study, we obtained two fracture resistance curves from static test of welding part of nuclear piping both by unloading compliance and nomalization method. The two curves were almost same each other, so the adaptability of the nomalization method has been proved. We conducted a dynamic fracture resistance test for the same material. The fracture resistance curve from the dynamic test was obtained by normalization method and compared to that of the static test result.

  • PDF

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Two Part Triplane Fracture with Extention through Medial Malleolus (Four Cases Report) (족관절 내과를 침범한 두 부분 삼면 골절(4예 보고))

  • Cha, Seung-Do;Kim, Hyung-Soo;Chung, Soo-Tae;Yoo, Jeong-Hyun;Park, Jai-Hyung;Kim, Joo-Hak;Kim, Yong-Hoon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.13 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • The triplane fracture has been described as a fracture of the distal tibial epiphysis occurring across three planes-sagittal, transverse and coronal. The characteristic pattern of fusion of distal tibial epiphysis explains the special configuration of the fragments in the triplane fracture. According to Dias-Tachdjian classification, triplane fracture is classified two part fracture, three part fracture, four part fracture and two part fracture with extension to the medial malleolus. Among four types, two part triplane fracture with extension to the medial malleolus is a relatively rare injury and generally is not treated by closed reduction. Such fractures should have an anatomic reduction and adequate fixation to restore the joint congruity and obtain an anatomic reduction of the growth plate to prevent a future growth deformity. This is usually best accomplished with an open reduction and screw fixation or k-wire fixation. We experienced two part triplane fracture with extension to medial malleolus and check the CT to define the extent of the injury completely. And then we underwent open reduction and screw fixation for the fracture. As a result, we present four cases of two part triplane fracture with extension with review of related literatures.

  • PDF

Analysis of teeth with a fatigue root fracture (지상보수교육강좌 1 - 피로 치근파절 치아의 분석)

  • Lee, Hak-Churl;Rhyu, In-Chul
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.140-145
    • /
    • 2010
  • True vertical root fracture (VRF) in nonendodontically treated teeth confined to the root surface (fatigue root fracture; FRF) is apparently uncommon, the few documented reports being Chinese. The aim of this study is to analyze the cases of a fatigue root fracture and to find out the characteristic features of teeth with a FRF. A total of 21 consecutive cases of fatigue root fracture occurring in 16 patients were reviewed. In terms of the occlusion, the presence of restorations, the location, the age and gender, each tooth and patient were analyzed. The prevalent age was in those over 50 years of age (75%) and FRFs were more frequent in male patients (69%). Fatigue root fractures occurred most frequently in the mandibular molars (61.9%; 42.9% in first molar, 19% in second molar). Fatigue root fractures were observed most frequently in the teeth with no restorations (85.7%) and in the patients with occlusal problems (94%). FRFs seem to occur frequently and may represent an undiagnosed clinical entity deserving of our attention.

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

Fracture Analysis of Implant Components using Scanning Electron Microscope - Part I : Implant Fixture (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 - Part I: 임플란트 고정체)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2010
  • The objective of the present study was to perform a fracture analysis on fractured implant fixture after use in vivo and make clear the cause & mechanisms of failure. In case of fatigue fracture, the fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand.