• Title/Summary/Keyword: Fractional Step Method

Search Result 109, Processing Time 0.023 seconds

Numerical Simulation of Typhoon-generated Waves using WAM with Implicit Scheme (음해법을 이용한 WAM모형의 태풍파랑 수치모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2006
  • Implicit numerical scheme using fractional step method and FCT is used to improve the computational efficiency of WAM. Square wave test and simulation of typhoon generated waves are conducted to verify the numerical scheme. The applied scheme shows much less numerical diffusion and due to the implicit character of the scheme much larger time steps can be used without numerical instability. For typhoon MAEMI, comparison between the numerical results and the measured data shows good agreement.

Effects of Non-hydrostatic Pressure on Free Surface Environmental Flows (자유표면 환경유동에 대한 비정수압 효과)

  • Yoon, B.S.;Park, C.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2005
  • In the present paper, a new calculation algorithm far solving large scale environmental or geophysical flows with free surface is proposed where the non-hydrostatic pressure component is taken into consideration. Predictor-corrector fractional step approach with explicit, forward time marching scheme in the sigma coordinate system is employed. In order to validate the present calculation algorithm and to estimate the effects of non-hydrostatic pressure on resultant flow and free surface movements, example calculations are carried out for typical steady and unsteady flow problems. Present method can be applied to the meso-scale free surface flows with complex bottom topography where MAC-like 3-d hydrodynamic calculations are quite ineffective and uneconomic.

  • PDF

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.

Study of the Periodic Ludwieg Tube Flow with Heat Addition (가열을 수반하는 Ludwieg Tube 유동에 대한 연구)

  • Baek, S.C.;Kwon, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.450-455
    • /
    • 2001
  • The time-dependent behavior of nonequilibrium condensation of moist air through the Ludwieg tube is investigated with a computational fluid dynamics(CFD) method. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The computational results are compared with the previous experiments using the Ludwieg tube with a downstream diaphragm. The results clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to nonequilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity, and the periodic excursions of the condensation shock wave are responsible for the total pressure loss.

  • PDF

A Study on Thermal Characteristics on Polymeric Floorings (고분자물질 바닥재의 열적특성에 관한 연구)

  • Lee, Nae-Woo;Kim, Nam-Seok;Moon, Byoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.38-45
    • /
    • 2006
  • Polymeric floorings mainly consisted of PVC are easily decomposed by many kinds of hot environmental factors, then generate hazardous asphyxiate gases and/or toxic gases etc. Therefore the mechanism of decomposition and quantitative toxic indices of products are very important for preventing safety and health disasters, especially in case of confined area. So we have investigated decomposition kinetics, numbers of process involved, toxicity indices of product and so on, using DSC, TGA, FT-IR and Pyrolyzer-GC/MS. The thermal decomposition process of polymeric floorings can be mainly divided by dehydrochlorinated reaction and polyene decomposition step, and activation energies of those are approximately $53.93{\sim}62.42kcal/mol$. Especially lethal concentration($LC_{50}$), fractional effective dose (FED) are calculated by measuring the amount of decomposition product. The values on $LC_{50}$ of sample G are ranged $2,003{\sim}2,019(mg/m^{3})$ in case of sample K and H are $1,877,\;1,998(g/m^{3})$ respectively. Even if the results are estimated by calculation method without animal test and/or clinical demonstration, these values could be very useful data for occupational health, hygiene and safety control.

Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle (초음속 노즐에서 발생하는 응축충격파 진동의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

Numerical Simulation of Separation using RANS model in Curved Channel (RANS를 이용한 곡선 수로에서 박리 현상 모의)

  • Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.63-63
    • /
    • 2016
  • 자연 하천은 연속적인 곡선 흐름을 가지고 있으며, 하천의 흐름을 해석하는 것은 복잡하고 어려운 일이다. 게다가 자연하천에서는 유사이송에 의해 하상변동이 발생하며 이를 정확하게 예측하는 것은 공학적 문제 해결에 중요한 역할을 한다. 곡선 흐름에서의 하상변동양상은 원심력에 의한 이차류로 인하여 유사가 하천의 내측으로 이동하게 되고, 하천의 외측에는 침식, 내측에는 퇴적이 된다. 이와 같은 현상은 원심력뿐만이 아니라 하천의 곡선에 의해 발생하게 되는 박리 또한 중요한 원인으로 이야기 되고 있으며, 선행 연구자들에 의해서 박리의 영향이 작지 않음을 알 수 있다. 자연하천에서의 정확한 하상변동을 예측하기 위해서는 원심력에 의한 이차류와 박리의 현상을 정확히 모의할 수 있어야하며, 이를 위해 3차원 모형이 필요하다. 따라서 본 연구에서는 3차원 unsteady RANS 모형을 이용하여 곡선수로에서 박리가 발생하는 현상을 모의하고자 한다. 곡선수로를 모의하기 위해서 곡선좌표계를 사용하였으며, 난류모형으로는 standard $k-{\varepsilon}$$k-{\omega}$ SST을 사용하였다. 또한 fractional step method를 이용하여 유속과 압력 커플링을 하였다. 그 결과 곡선수로의 흐름모의에서 레이놀즈 수가 큰 경우 박리가 발생하는 것을 확인하였으며, 두 난류모형 모두 곡선 흐름에서의 박리 현상을 모의할 수 있었다.

  • PDF

Priority Factors of Service Recovery Strategy in Distribution Channel

  • Han, Sang-Lin;Jung, Kyung Sik;Lee, Myoung Soung;Lee, Jong Won
    • Asia Marketing Journal
    • /
    • v.17 no.2
    • /
    • pp.97-125
    • /
    • 2015
  • In this study, we tried to evaluate the relative importance and find out the differences in consumer perceptions regarding service recovery strategies and the service provider in the distribution industry by using AHP (Analytic Hierarchy Process) analysis method. Therefore in this study, we tried to systematize various recovery strategies which were considered very important during service failure process in the distribution industry and analyze the relative importance for each recovery strategy. We set hierarchy composed of four items of monetary, action-oriented, psychological, and assured level as primary selection criteria and a total of 16 items(indemnity, refund, gift, gift certificate, prompt resolution, exchange, manager support, explanation, apology, empathy, acknowledge, kindness, assortment, after service, manage subcontractor, manage employee) as secondary selection criteria. We tried to take one step further from the service sector and study service recovery strategies specialized in distributor services. This study suggests various implications about service recovery strategies of distributors. First, this study can provide practical implications - e.g. service recovery efforts should be applied differently depending on service channels. There is a perceptual difference with respect to the importance of the types of service recovery strategies between service provider and final customer. Second, we can find theoretical implications in terms of identifying the priorities through hierarchy design of new recovery strategies and comparison of each element from the classifications of the current fractional recovery strategies. We hope to help service providers to build more efficient recovery strategy system based on the results of this study.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.