• 제목/요약/키워드: Fraction of Premixed Combustion

검색결과 44건 처리시간 0.024초

라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측 (Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF)

  • 최경민
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구 (A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

가솔린 기관의 혼합기 조성과 연소 특성에 관한 연구 (A Study on Mixture Composition and Combustion Characteristics in Gasoline Engine)

  • 김기복;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.197-206
    • /
    • 2015
  • Recently the automobile engine has been developed in achieving the high performance, fuel economy, and emission reduction. In a conventional spark ignition engine the fuel and air are mixed together in the intake system, inducted through the intake valve into the cylinder, and then compressed. Under normal operating conditions, the combustion is initiated towards the end of the compression stroke at the spark plug by an electric discharge. Following inflammation, a flame develops and propagates through this premixed fuel-air mixture. Therefore the state of mixture is very important in the combustion and emission characteristics. In this study the combustion and emission characteristics were tested and analyzed with changing the mixture composition and engine operating parameters in order to improve the combustion and performance in engine.

Zone-conditioned CMC 모델을 이용한 부분예혼합 난류연소 모델링 (Modeling of Partially Premixed Turbulent Combustion by Zone-Conditioned Conditional Moment Closure)

  • 이은주;김승현;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.41-45
    • /
    • 2002
  • The zone-conditioned CMC equations are derived by taking an unconditional average of the generic conservation equations multiplied by delta and Heaviside functions in terms of mixture fraction and reaction progress variable. The resulting equations are essentially in the same form as the single zone CMC equations except for separate flow fields for burned and unburned gas. The zone-conditioned two-fluid equations are applied to a stagnating turbulent premixed flame brush of Cheng and Shepherd[5l. It is shown that the flame stretch factor is of crucial importance to accurately reproduce the measured mean reaction progress variable and conditional velocities. Further work is in progress for the relationship between surface and volume averages and extension to partially premixed combustion on the basis of a triple flame structure, e. g. in a lifted turbulent diffusion flame.

  • PDF

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구 (A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

다중 혼합기 난류 비예혼합 연소시스템에 대한 수치모델링 (Two Conserved Scalar Approach for the Turbulent Nonpremixed Flames)

  • 김군홍;강성모;김용모;안국영
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.57-61
    • /
    • 2003
  • In the combustion modeling of non-premixed flames, the mixture fraction conserved scalar approach is widely utilized because reactants are mixed at the molecular level before burning and atomic elements are conserved in chemical reactions. In the mixture fraction approach, combustion process is simplified to a mixing problem and the interaction between chemistry and turbulence could be modelled by many sophisticated combustion models including the flamelet model and CMC. However, most of the mixture fraction approach is restricted to one mixture system. In this study, the flamelet model based on the two-feed system is extended to the multiple fuel-feeding systems by the two mixture fraction conserved scalar approach.

  • PDF

난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리 (Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame)

  • 안태국;이대훈;박선호
    • 한국연소학회지
    • /
    • 제22권1호
    • /
    • pp.23-31
    • /
    • 2017
  • Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

근사적 열발생율에 의한 예연소실식 디젤기관의 연소해석 (Combustion Analysis in a Pro-Combustion Chamber Diesel Engine by Approximate Heat Release Rate)

  • 왕우경
    • 수산해양기술연구
    • /
    • 제29권1호
    • /
    • pp.30-38
    • /
    • 1993
  • 예연소실식 디젤기관에 있어서 박용부하운전조건에 따른 연소특성을 규명하기 위해 예언소실의 압력데이터를 single-zone, single-chamber의 열역학적 해석에 적용하여 연소해석을 행한 결과 다음과 같은 결론을 얻었다. 1) 부하가 증가함에 따라 최고압력이 상승하고 그 위치가 크랭크각도상 후진되었다. 2) 착화 지연시간은 부하에 관계없이 거의 일정하고, 부하가 증가할수록 가연 혼합기 형성에 소요되는 흡열량은 겉보기로 감소하였다. 3) 예혼합 연소단계의 열발생 양상은 부하에 관계없이 거의 비슷하고, 예혼합 연소시간은 부하가 증가할수록 짧아졌다. 4) 부하가 증가함에 따라 예혼합 연소량은 다소 증가하나 일정 연공비 이상에서는 거의 일정했다. 5) 예혼합 연소분율은 부하가 증가함에 따라 감소했다.(이 논문의 결론부분임)

  • PDF

Experimental Study on Flame Stabilization and $NO_{x}$ Reduction in a Non-Premixed Burner with Sawtooth Mixer

  • Fujimoto, Yohei;lnokuchi, Yuzo;Orino, Minoru;Yamasaki, Nobuhiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.485-490
    • /
    • 2004
  • Sawtooth mixing device used in a non-premixed burner is evaluated for flame stabilization and NO$_{x}$ reduction. Three mixers with different blade angles are tested. Methane is delivered through the fuel jet and air passes through the co-flow annulus. The flame mode changes (attached flame, lifted flame and extinction) against the fuel flow speed are measured, and the stability diagram is drawn. Moreover, by traversing thermocouple and sampling probe in the flame, the distribution of temperature and NO$_{x}$ mole fraction are measured. With the change in blade angle, flame shape, flame stabilization, the distribution of temperature and NO$_{x}$ mole fraction are changed considerably.rably.

  • PDF