• Title/Summary/Keyword: Fourier transform infrared spectroscopy (FTIR)

Search Result 297, Processing Time 0.023 seconds

Kinetics, Isotherm and Adsorption Mechanism Studies of Letrozole Loaded Modified and Biosynthesized Silver Nanoparticles as a Drug Delivery System: Comparison of Nonlinear and Linear Analysis

  • PourShaban, Mahsa;Moniri, Elham;Safaeijavan, Raheleh;Panahi, Homayon Ahmad
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.493-502
    • /
    • 2021
  • We prepared and investigated a biosynthesized nanoparticulate system with high adsorption and release capacity of letrozole. Silver nanoparticles (AgNPs) were biosynthesized using olive leaf extract. Cysteine was capped AgNPs to increase the adsorption capacity and suitable interaction between nanoparticles and drug. Morphology and size of nanoparticles were confirmed using transmission electron microscopy (TEM). Nanoparticles were spherical with an average diameter of less than 100 nm. Cysteine capping was successfully confirmed by Fourier transform infrared resonance (FTIR) spectroscopy and elemental analysis (CHN). Also, the factors of letrozole adsorption were optimized and the linear and non-linear forms of isotherms and kinetics were studied. Confirmation of the adsorption data of letrozole by cysteine capped nanoparticles in the Langmuir isotherm model indicated the homogeneous binding site of modified nanoparticles surface. Furthermore, the adsorption rate was kinetically adjusted to the pseudo-second-order model, and a high adsorption rate was observed, indicating that cysteine coated nanoparticles are a promising adsorbent for letrozole delivery. Finally, the kinetic release profile of letrozole loaded modified nanoparticles in simulated gastric and intestinal buffers was studied. Nearly 40% of letrozole was released in simulated gastric fluid with pH 1.2, in 30 min and the rest of it (60%) was released in simulated intestinal fluid with pH 7.4 in 10 h. These results indicate the efficiency of the cysteine capped AgNPs for adsorption and release of drug letrozole for breast cancer therapy.

Development and Evaluation of Portable Multiple Gas Meter (휴대용 다중 가스측정 장비 개발 및 평가)

  • Jang, Hee-Joong;Kim, Eung-Sik;Park, Jong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.483-490
    • /
    • 2019
  • Assessing the effect of forest fires and measuring the gas concentration around a fire has received little attention. Therefore, the concentrations of various gases in areas surrounding a fire need to be measured by the development of a suitable device. Unlike conventional portable devices, the AQS (Air Quality System) proposed in this paper is a portable instrument that measures five types of gases simultaneously, including CO, CO2, NOx, VOCs, and NH3, and has high durability through sensor protection algorithms. A PC-based program with an AQS connection was developed to monitor the real-time changes in the gas concentration. The reliability of the developed device was proven through a comparison of the results with other commercial gas analyzers. Measurements of the concentration due to indoor and outdoor fires were performed around a fire area to review the applicability and the predicted results were obtained.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Decay of Populus cathay Treated with Paraffin Wax Emulsion and Copper Azole Compound

  • Liu, Jie;Liu, Min;Hou, Bingyi;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • In order to investigate the decay process of wood treated with preservative, waterproofing agent and their compound systems, a full-cell process was applied to impregnate the sapwood of poplar (Populus cathay) at paraffin wax emulsion concentrations of 0.5% and 2.0%, Copper Azole (CA) concentrations of 0.3% and 0.5%, and their four compound systems, respectively. Leaching tests and laboratory decay resistance against the white-rot fungus Corious versicolor (L.) Murrill for treated wood were carried out according to the America Standard E11-06 and China Standard GB/T 13942.1-2009. At certain time intervals during the decay test, samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction technique (XRD) to investigate the time-dependent changes of chemical components and crystalline structure, thus clarifying the decay mechanisms. The results suggested that white-rot fungi degrade hemicellulose and lignin in the wood cell wall first, followed by a simultaneous degradation of polysaccharides and lignin. Besides, CA could not only slower the decomposition of both hemicellulose and lignin, but also reduce the degradation amount of hemicellulose. However, paraffin wax emulsion at high concentration had a negative effect on the impregnation of CA for the compound system treated wood.

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Lewis-Lujan, Lidianys Maria;Rosas-Burgos, Ema Carina;Ezquerra-Brauer, Josafat Marina;Burboa-Zazueta, Maria Guadalupe;Assanga, Simon Bernard Iloki;del Castillo-Castro, Teresa;Penton, Giselle;Plascencia-Jatomea, Maribel
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.989-1002
    • /
    • 2022
  • Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

Synthesis and characterization of the two-fold interpenetrated Tb(III)-based metal-organic framework (이중 상호 침투 구조를 갖는 신규 터븀(III) 기반 금속-유기 골격체의 합성 및 특성연구)

  • Song, Jeong Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.225-230
    • /
    • 2022
  • A new two-fold interpenetrating two-dimensional (2D) Tb(III) metal-organic framework (MOF), [Tb(p-XBP4)2.5(H2O)2]·W(CN)8 (1), was prepared using a p-XBP4 (N,N'-p-phenylenedimethylenbis(pyridin-4-one)), Cs3[W(CN)8], and Tb(NO3)3·6H2O. The single crystal X-ray diffraction indicated that Tb-MOF exhibits a unique two-fold interpenetrating 2-D framework. It was also characterized through Fourier transform infrared spectroscopy (FTIR), and single and powder X-ray diffraction. To probe the molecular magnetic behavior, the magnetic properties of Tb-MOF were investigated by direct-current (DC) and alternating-current (AC) magnetic susceptibilities measurements and discussed.

Evaluation of Antioxidant Potential and UV Protective Properties of Four Bacterial Pigments

  • Rupali Koshti;Ashish Jagtap;Domnic Noronha;Shivali Patkar;Jennifer Nazareth;Ruby Paulose;Avik Chakraborty;Pampi Chakraborty
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.375-386
    • /
    • 2022
  • In the present study, four distinctly colored bacterial isolates that show intense pigmentation upon brief ultraviolet (UV) light exposure are chosen. The strains are identified as Micrococcus luteus (Milky yellow), Cryseobacterium pallidum (Yellow), Cryseobacterium spp. (Golden yellow), and Kocuria turfanensis (Pink) based on their morphological and 16S rDNA analysis. Moderate salinity (1.25%), 25-37℃ temperature, and pH of 7.2 are found to be the most favorable conditions of growth and pigment production for all the selected isolates. The pigments are extracted using methanol: chloroform (1:1) and the purity of the pigments are confirmed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Further, Fourier transform infrared (FTIR) and UV-Visible spectroscopy indicate their resemblance with carotenoids and flexirubin family. The antioxidant activities of the pigments are estimated, and, all the pigments have shown significant antioxidant efficacy in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The UV protective property of the pigments is determined by cling-film assay, wherein, at least 25% of UV sensitive Escherichia coli survive with bio-pigments even after 90 seconds of UV exposure compared to control. The pigments also hold a good sun protective factor (SPF) value (1.5-4.9) which is calculated with the Mansur equation. Based on these results, it can be predicted that these bacterial pigments can be further developed into a promising antioxidant and UV-protectant for several biomedical applications.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Microplastic pollution in two industrial locations of the Karnaphuli River, Bangladesh: insights on abundance, types, and characteristics

  • Shahida Arfine Shimul;Zannatul Bakeya;Jannatun Naeem Ananna;Antar Sarker;Saifuddin Rana;Sk. Ahmad Al Nahid
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.715-725
    • /
    • 2023
  • Microplastic (MP) pollution in aquatic environments is a growing concern worldwide. This study investigated the abundance, types, and attributes of MPs in the surface water at two industrial sites (Avoimitro Ghat and Kalurghat) along the Karnaphuli River in Chattogram, Bangladesh. Sampling was conducted over eight months across three transects encompassing a total area of 500 m at each site. A manta net of 200 ㎛ mesh size was used to sample MPs. The obtained samples were subsequently filtered, enumerated, and characterized using a stereo microscope and imaging software. The mean abundance of MP particles (per km2 ) was found higher in Avoimitro Ghat (94,861 ± 57,126) than in Kalurghat (31,343 ± 23,183). A significant statistical difference (p < 0.05) was observed in the mean abundance of MP particles between the wet and dry seasons. The fragment group of MP exhibited the most abundant category, whereas the pellet category displayed the lowest. MPs with an elongated shape prevailed at both locations throughout all seasons. At Avoimitro Ghat, blue-colored MPs demonstrated the highest mean count, while in Kalurghat, the highest mean count belonged to brown-colored MPs. The size distribution of MPs differed between the two sites, with 1-2 mm MPs being plentiful in both seasons and Avoimitro Ghat, whereas MPs ranging from 500 ㎛ to less than 1 mm were abundant in Kalurghat. Ten (10) polymer types were found from Fourier-transform infrared spectroscopy (FTIR) analysis with high levels of polypropylene atactic in both Avoimitro Ghat (32%) and Kalurghat (17%). The findings provide important insights into MP pollution in the Karnaphuli River, which may aid in developing effective strategies to mitigate the impacts of MP pollution on the aquatic ecosystem and human health.