Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2022.32.6.225

Synthesis and characterization of the two-fold interpenetrated Tb(III)-based metal-organic framework  

Song, Jeong Hwa (Dept. of Advanced Materials & Chemical Engineering, Halla University)
Abstract
A new two-fold interpenetrating two-dimensional (2D) Tb(III) metal-organic framework (MOF), [Tb(p-XBP4)2.5(H2O)2]·W(CN)8 (1), was prepared using a p-XBP4 (N,N'-p-phenylenedimethylenbis(pyridin-4-one)), Cs3[W(CN)8], and Tb(NO3)3·6H2O. The single crystal X-ray diffraction indicated that Tb-MOF exhibits a unique two-fold interpenetrating 2-D framework. It was also characterized through Fourier transform infrared spectroscopy (FTIR), and single and powder X-ray diffraction. To probe the molecular magnetic behavior, the magnetic properties of Tb-MOF were investigated by direct-current (DC) and alternating-current (AC) magnetic susceptibilities measurements and discussed.
Keywords
Lanthanide; Tb-MOF; Metal-organic framework; Interpenetration; Magnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Zhao, D.J. Timmons, D. Yuan and H.C. Zhou, "Tuning the topology and functionality of metal-organic frameworks by ligand design", Acc. Chem. Res. 44 (2011) 123.   DOI
2 M. Gharib, V. Safarifard and A. Morsali, "Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitro aromatic sensing", Ultrason. Sonochem. 42 (2018) 112.   DOI
3 V. Gupta and S.K. Mandal, "A robust and water-stable two-fold interpenetrated metal-organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture", Dalton. Trans. 48 (2019) 415.   DOI
4 R. Haldar, N. Sikdar and T.K. Maji, "Interpenetration in coordination polymers: structural diversities toward porous functional materials", Mater. Today 18 (2015) 97.   DOI
5 M. Frank, M.D. Johnstone and G.H. Clever, "Interpenetrated cage structures", Chem. Eur. J. 22 (2016) 14104.   DOI
6 L. Carlucci, G. Ciani, D.M. Proserpio, T.G. Mitina and V.A. Blatov, "Entangled two-dimensional coordination networks: a general survey", Chem. Rev. 114 (2014) 7757.
7 Q. Yang, X. Chen, Z. Chen, Y. Hao, Y. Li, Q. Lua and H. Zheng, "Metal-organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system", Chem. Commun. 48 (2012) 10016.   DOI
8 P. Hu, Z. Sun, X. Wang, L. Li, D. Liao and D. Luneau, "Magnetic relaxation in mononuclear Tb complex involving a nitronyl nitroxide ligand", New J. Chem. 38 (2014) 4716.   DOI
9 O. Kwon, S. Park, H.C. Zhou and J. Kim, "Computational prediction of hetero-interpenetration in metal-organic frameworks", Chem. Commun. 53 (2017) 1953.   DOI
10 L. Ohrstrom, "Let's talk about MOFs - Topology and terminology of metal-orrganic frameworks and why we need them", Crystals 5 (2015) 154.   DOI
11 H.C. Zhou, J.R. Long and O.M. Yaghi, "Introduction to metal-organic frameworks", Chem. Rev. 112 (2012) 673.   DOI
12 L. Liu, Z. Yao, Y. Ye, Q. Lin, S. Chen, Z. Zhang and S. Xiang, "Enhanced intrinsic proton conductivity of metal-organic frameworks by tuning the degree of interpenetration", Cryst. Growth. Des. 18 (2018) 3724.   DOI
13 S.L. James, "Metal-organic frameworks", Chem. Soc. Rev. 32 (2003) 276.   DOI
14 S.T. Meek, J.A. Greathouse and M.D. Allendorf, "Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials", Adv. Mater. 23 (2011) 249.   DOI
15 Z. Zhang, Q. Yang, X. Cui, L. Yang, Z. Bao, Q. Ren and H. Xing, "Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving", Angew. Chem. Int. Ed. 56 (2017) 16282.   DOI
16 Z.Q. Shi, Z.J. Guo and H.G. Zheng, "Two luminescent Zn(ii) metal-organic frameworks for exceptionally selective detection of picric acid explosives", Chem. Commun. 51 (2015) 8300.   DOI
17 H.L. Jiang, T.A. Makal and H.C. Zhou, "Interpenetration control in metal-organic frameworks for functional applications", Coord. Chem. Rev. 257 (2013) 2232.   DOI
18 Y.N. Gong, D.C. Zhong and T.B. Lu, "Interpenetrating metal-organic frameworks", Cryst. Eng. Comm. 18 (2016) 2596.   DOI
19 R. Zhu, J. Ding, L. Jin and H. Pang, "Interpenetrated structures appeared in supramolecular cages, MOFs, COFs", Coord. Chem. Rev. 389 (2019) 119.   DOI
20 O.M. Yaghi, "A tale of two entanglements", Nat. Mater. 6 (2007) 92.   DOI
21 A.B. Cairns and A.L. Goodwin, "Structural disorder in molecular framework materials", Chem. Soc. Rev. 42 (2013) 4881.   DOI
22 L.D.C. Bok, J.G. Leipoldt and S.S. Basson, "The preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O", Anorg. Allg. Chem. 415 (1975) 81.   DOI
23 N.C. Burtch and K.S. Walton, "Modulating adsorption and stability properties in pillared metal-organic frameworks: a model system for understanding ligand effects", Acc. Chem. Res. 48 (2015) 2850.   DOI
24 X. He, X.-P. Lu, Y.-Y. Tian, M.-X. Li, S. Zhu, F. Xing and R.E. Morris, "Controlling interpenetration in metal-organic frameworks by tuning the conformations of flexible bis(triazole) ligands", CrystEngComm. 15 (2013) 9437.   DOI
25 D.M.L. Goodgame, S. Menzer, A.M. Smith and D.J. Williams, "Formation of interwoven or partially interwoven metallomacrocyclic networks in copper(II) or zinc(II) complexes with N,N'-p-phenylenedimethylenebis(pyridin-4-one)", J. Am. Chem. Soc., Chem. Commun. 19 (1995) 1975.