• Title/Summary/Keyword: Fourier transform infrared spectroscopy

Search Result 964, Processing Time 0.03 seconds

Direct Determination of Soil Nitrate Using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) (중적외선 분광학을 이용한 토양 내의 질산태 질소 정량분석)

  • Choe, Eunyoung;Kim, Kyoung-Woong;Hong, Suk Young;Kim, Ju-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Mid-infrared (MIR) spectroscopy, particularly Fourier transform infrared spectroscopy (FTIR), has emerged as an important analytical tool in quantification as well as identification of multi-atomic inorganic ions such as nitrate. In the present study, the possibility of quantifying soil nitrate via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) without change of a sample phase or with least treated samples was examined. Four types of soils were spectrally characterized in terms of unique bands of soil contents and interferences with nitrate bands in the range of $2000-1000cm^{-1}$. In order to reduce the effects of soil composition on calibration model for nitrate, spectra transformed to the 1st order derivatives were used in the partial least squared regression (PLSR) model and the classification procedure associated with input soil types was involved in calibration system. PLSR calibration models for each soil type provided better performance results ($R^2$>0.95, RPD>6.0) than the model considering just one type of soil as a standard.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Damage Pattern Analysis of Voltage Cabinet Panel due to Flame (분전반의 화염에 의한 소손패턴 분석)

  • Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon;Kim, Man-Geon
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2008
  • This paper deals with damage patterns of cabinet panel for low voltage deteriorated by flame. In order to analyze damage patterns, we used Metallurgical Microscope, x-ray system, and Fourier Transform Infrared spectroscopy. Firstly, Metallurgical microscope was used for analysis of electrical causes, such as electric short and overload Secondly, X-ray system was used for analysis of internal characteristics of circuit breakers. Lastly, Fourier Transform Infrared spectroscopy was used for analysis of damage direction by flame.

  • PDF

Damage Pattern Analysis of Low Voltage Cabinet Panel due to Flame (저압 분전반의 화염에 의한 소손패턴 분석)

  • Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Hyang-Kon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper deals with damage patterns of cabinet panel for low voltage deteriorated by flame. In order to analyze damage patterns, we used Metallurgical Microscope, x-ray system, and Fourier Transform Infrared spectroscopy. Firstly, Metallurgical microscope was used for analysis of electrical causes, such as electric short and overload. Secondly, X-ray system was used for analysis of internal characteristics of circuit breakers. Lastly, Fourier Transform Infrared spectroscopy was used for analysis of damage direction by flame. The following results were obtained.

  • PDF

Hard Tissue Analysis of NMR after Fluoride Administration

  • Kim, Hye-Young;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.599-602
    • /
    • 2016
  • Fluoride (F) is an important element for the mineralization of body tissues. The purpose of this study was to administer fluoride prenatally to rats to evaluate its beneficial concentration for rat bone using microstructural analysis, to analyze its effect on the bone structure, and to evaluate the effect of its transfer through rat placenta. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectrometry (NMR) were performed. The $^{19}F$ NMR and $^{31}P$ NMR signals suggested the existence of fluoride ions in the apatite lattice because the signals were caused by the fluoride ions that were coupled to the phosphate atoms and were affected in the phosphate phases other than the element phases in the apatite. Consequently, if it was not affected too much, the desirable concentration of prenatal fluoride treatment could have a helpful effect on the bone crystal structure through placental fluoride transfer.

Removal of Uranium from Aqueous Solution by Alginate Beads

  • Yu, Jing;Wang, Jianlong;Jiang, Yizhou
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.534-540
    • /
    • 2017
  • The adsorption of uranium (VI) by calcium alginate beads was examined by batch experiments. The effects of environmental conditions on U (VI) adsorption were studied, including contact time, pH, initial concentration of U (VI), and temperature. The alginate beads were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Fourier transform infrared spectra indicated that hydroxyl and alkoxy groups are present at the surface of the beads. The experimental results showed that the adsorption of U (VI) by alginate beads was strongly dependent on pH, the adsorption increased at pH 3~7, then decreased at pH 7~9. The adsorption reached equilibrium within 2 minutes. The adsorption kinetics of U (VI) onto alginate beads can be described by a pseudo first-order kinetic model. The adsorption isotherm can be described by the Redlich-Peterson model, and the maximum adsorption capacity was 237.15 mg/g. The sorption process is spontaneous and has an exothermic reaction.

Gliclazide compatibility with some common chemically reactive excipients; using different analytical techniques

  • Jabbari, Hamideh Najjarpour;Shabani, Mohammad;Monajjemzadeh, Farnaz
    • Analytical Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • Evaluation of drug-excipient compatibility is one of the basic steps in the preformulation of pharmaceutical dosage forms. Some reactive excipients have been known so far which may cause stability problems for drug molecules in pharmaceutical dosage forms. The aim of this study was to evaluate drugexcipient compatibility of gliclazide with some common pharmaceutical excipients, known for their ability to incorporate in drug-excipient interactions. Binary mixtures were prepared using lactose, magnesium stearate, polyvinylpyrrolidone, sodium starch glycolate, polyethylene glycol 2000 and dicalcium phosphate. Based on the results; gliclazide was incompatible with all tested excipients; but not with dicalcium phosphate. DSC (Differential Scanning Calorimetry) results were in accordance with HPLC (High Pressure liquid chromatography) data and were more predictive than FTIR (Fourier Transform Infrared Spectroscopy). Drug and reactive excipients incompatibility was fully discussed and documented. It is advisable to avoid incompatible excipients or carefully monitor the drug stability when incorporating such excipients in final formulation designs.

Experimental Study of the Phase Equilibria for $CO_2$ in Liquified Natural Gas Components at 77-219K

  • Yun, Sang-Kook
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 2003
  • In order to prevent roll-over and a rapid boil-off of LNG in tanks, the phase equilibria of carbon dioxide in liquefied natural gas components as binary mixtures at cryogenic temperatures have been experimentally measured using Fourier transform infrared spectroscopy in conjunction with a specially designed variable pressure/temperature cryostat cell (pathlength 2 mm; pressures up to 30 bar). Solid carbon dioxide has been found to be comparatively soluble in liquid nitrogen (3.25$\times$${10}^{-6}$ mole fraction), liquid methane (1.04$\times$${10}^{-4}$ mole fraction), liquid ethane (3.1$\times$${10}^{-2}$ mole fraction) and liquid propane (6.11$\times$${10}^{-2}$ mole fraction) at their normal boiling temperatures. The solubilities of carbon dioxide in various cryogens, which increased with increasing temperature, are much lower than those obtained by others using gas chromatography. The differences are attributed to infrared spectroscopy selectively measuring dissolved solute in situ whereas gas chromatography measures microscopic particulate solid in addition to dissolved solute.

Analysis and Conservation of Historic Textiles - Theory and Practice - (섬유 문화재의 분석과 보존처리 - 이론과 실제 -)

  • Oh, Joon-Suk
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.5
    • /
    • pp.211-231
    • /
    • 2008
  • To conserve historic textiles, analyses of textile materials, pollutants and deterioration are prerequisite steps. Based upon analytical results, guides for conservation of historic textiles are established. In analyses of textile materials, pollutants and deterioration, there are chemical methods(burning, solubility and staining), physical methods(microscopy and density) and instrumental analysis(Fourier Transform Infrared Spectroscopy (FT-IR), Fourier Transform Raman Spectroscopy(FT-Raman), Gas Chromatography(GC), Mass Spectroscopy(MS), X-Ray Fluorescence (EDXRF, WDXRF), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffraction(XRD), Tensile Testing Machine etc.). Combination of qualitative and quantitative analyses makes accurate diagnosis of textile condition possible. As examples of analyses and conservation of historic textiles, Chuninsan(19 century) similar to sunshade with handing down historic textile and golden decorative skirt(17 century) with excavated costume are taken.