• Title/Summary/Keyword: Fourier spectral analysis

Search Result 182, Processing Time 0.025 seconds

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2548-2554
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor is designed, which is based on a single-memory bank architecture and the radix-4 algorithm. The designed FFT processor has been verified by FPGA implementation, and has high accuracy with arithmetic error less than 2%.

Measurement and Interpretation of Time Variations of Particulate Matter Observed in the Busan Coastal Area in Korea

  • Kim, Cheol-Hee;Son, Hye-Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • In order to investigate the effects of local and synoptic meteorological conditions on urban scale particulate air pollutants observed over the Busan coastal area, power spectrum analysis was applied to observed particulate matter with an aerodynamic diameter $\leq10\;{\mu}m$ ($PM_{10}$) for the period from 1 October, 1993 to 31 December, 2004. Fast Fourier Transform (FFT) analysis was used to obtain the hourly mean observed $PM_{10}$ concentrations to identify different periodicity scales of $PM_{10}$ concentrations. The results showed that, aside from the typical and well-known periodicities such as diurnal and annual variations caused by anthropogenic influences, three other significant power spectral density peaks were identified: 7-day, 21-day and 2.25-year periodicities. Cospectrum analysis indicated that the seven-day variations were closely related to the synoptic meteorological conditions such as weak wind speed, which are relevant to the stagnant high pressure system slowly passing through the Korean Peninsula. The intra-seasonal 21-day variation was negatively correlated with wind speed but was consistently positively correlated with relative humidity, which is related to aerosol formation that can be achieved as a result of the hygroscopic characteristics of aerosols. However, the quasibiennial 2.25-year variation was correlated with the frequency of Asian dust occurrence, the periodicities of which have been recorded inter-annually over the Korean Peninsula.

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Kim, Hae-Ju;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.88-91
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor based on single-memory bank architecture and radix-4 algorithm is designed. The designed FFT processor has high accuracy with arithmetic error less than 3%.

  • PDF

Rapid Prediction of Amylose Content of Polished Rice by Fourier Transform Near-Infrared Spectroscopy

  • Lee, Jin-Cheol;Yoon, Yeon-Hee;Kim, Sun-Min;Pyo, Byong-Sik;Hsieh, Fu-Hung;Kim, Hak-Jin;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.477-481
    • /
    • 2007
  • Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression were used to predict the amylose content of polished rice. Spectral reflectance data in a wavelength range of 1,000 to 2,500 nm were obtained with a commercial spectrophotometer for 60 different varieties of Korean rice. For a comparison of this spectroscopic method to a standard chemical analysis, the amylose contents of the tested rice samples were determined by the iodine-blue colorimetric method. The highest correlation for the rice amylose ($R^2=0.94$, standard error of prediction=0.20% amylose content) was obtained when using the FT-NIR spectrum data pre-treated with normalization, the first derivative, smoothing, and scattering correction.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Characterization of the Spatial Variability of Paper Formation Using a Continuous Wavelet Transform

  • Keller, D.Steven;Luner, Philip;Pawlak, Joel J.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.14-25
    • /
    • 2000
  • In this investigation, a wavelet transform analysis was used to decompose beta-radiographic formation images into spectral and spatial components. Conventional formation analysis may use spectral analysis, based on Fourier transformation or variance vs. zone size, to describe the grammage distribution of features such as flocs, streaks and mean fiber orientation. However, these methods have limited utility for the analysis of statistically stationary data sets where variance is not uniform with position, e.g. paper machine CD profiles (especially those that contain streaks). A continuous wavelet transform was used to analyze formation data arrays obtained from radiographic imaging of handsheets and cross machine paper samples. The response of the analytical method to grammage, floc size distribution, mean fiber orientation an sensitivity to feature localization were assessed. From wavelet analysis, the change in scale of grammage variation as a function of position was used to demonstrate regular and isolated differences in the formed structure.

  • PDF

A Frequency Spectrum Analysis based on FFT of Fire Thermal Image (FFT를 이용한 화재 열영상의 주파수 스펙트럼 분석)

  • Kim, Won-Ho;Jang, Bok-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • This paper presents the frequency spectral analysis based on FFT of the infrared ray fire thermal image, it is an object to deduce the conditions for determining fire alarm through the image processing with the frequency domain. After the candidate regions are separated by using pre-defined brightness value, the fast fourier transform is performed for consecutive infrared thermal images, the frequency spectral analysis of the thermal image analyzed DC and AC frequency distribution. The fire criterion of the thermal image was presented based on the analyzed result and a practicality was confirmed through the computer simulation.

A BAYESIAN VIEW ON FARADAY ROTATION MAPS - SEEING THE MAGNETIC POWER SPECTRUM IN CLUSTERS OF GALAXIES

  • VOGT CORINA;ENBLIN TORSTEN A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.349-353
    • /
    • 2004
  • Magnetic fields are an important ingredient of galaxy clusters and are indirectly observed on cluster scales as radio haloes and radio relics. One promising method to shed light on the properties of cluster wide magnetic fields is the analysis of Faraday rotation maps of extended extragalactic radio sources. We developed a Fourier analysis for such Faraday rotation maps in order to determine the magnetic power spectra of cluster fields. In an advanced step, here we apply a Bayesian maximum likelihood method to the RM map of the north lobe of Hydra A on the basis of our Fourier analysis and derive the power spectrum of the cluster magnetic field. For Hydra A, we measure a spectral index of -5/3 over at least one order of magnitude implying Kolmogorov type turbulence. We find a dominant scale of about 3 kpc on which the magnetic power is concentrated, since the magnetic autocorrelation length is ${\lambda}_B = 3 {\pm} 0.5\;kpc$. Furthermore, we investigate the influences of the assumption about the sampling volume (described by a window function) on the magnetic power spectrum. The central magnetic field strength was determined to be ${\~}7{\pm}2{\mu}G$ for the most likely geometries.

Seismic response analysis of embankment dams under decomposed earthquakes

  • Nasiri, Fatemeh;Javdanian, Hamed;Heidari, Ali
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • In this study, the seismic response analysis of embankment dams was investigated through numerical modeling. The seismic behavior of dams under main earthquake records and wavelet-based records were studied. Earthquake records were decomposed using de-noising method (DNM) and down-sampling method (DSM) up to five levels. In decomposition process, low and high frequencies of the main earthquake record were separated into two signals. Acceleration response, spectral acceleration, and Fourier amplitude spectrum at the crest of embankment dams under different decomposition levels were evaluated. The seismic behavior under main and decomposed earthquake records was compared. The results indicate an acceptable agreement between the seismic responses of embankment dams under wavelet-based decomposed records and main earthquake motions. Dynamic analyses show that the DNM-based decomposed earthquake records have a better performance compared to DSM-based records. DNM-based records up to level 4 and DSM-based records up to level 2 have a high accuracy in assessment of seismic behavior of embankment dams. The periods corresponding to the maximum values of acceleration spectra and the frequencies corresponding to the maximum values of Fourier amplitude spectra of embankment dam crest under main and decomposed records are in good agreement. The results demonstrate that the main earthquake records can be replaced by wavelet-based decomposed records in seismic analysis of embankment dams.

Spectral Analysis of Nonliner Dynamic Response for Dynamic Instability of Shallow Elliptic Paraboloidal Shells (얕은 타원포물곡면쉘의 동적 불안정 현상의 규명을 위한 비선형 동적 응답의 스펙트럼 분석)

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • The dynamic instability for snapping phenomena has been studied by many researchers. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against step excitation. In this study, the dynamic direct snapping of shallow elliptic paraboloidal shells is investigated under not only step excitation but also sinusoidal and seismic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels. The results show that the dynamic instability phenomenon carried out from stable to unstable region reveals considerably different mechanism depending on the characteristics of excitations.

  • PDF