• Title/Summary/Keyword: Fourier Transform Spectroscopy

Search Result 1,022, Processing Time 0.032 seconds

Hard Tissue Analysis of NMR after Fluoride Administration

  • Kim, Hye-Young;Nam, Seoul-Hee;Han, Man-Seok
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.599-602
    • /
    • 2016
  • Fluoride (F) is an important element for the mineralization of body tissues. The purpose of this study was to administer fluoride prenatally to rats to evaluate its beneficial concentration for rat bone using microstructural analysis, to analyze its effect on the bone structure, and to evaluate the effect of its transfer through rat placenta. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectrometry (NMR) were performed. The $^{19}F$ NMR and $^{31}P$ NMR signals suggested the existence of fluoride ions in the apatite lattice because the signals were caused by the fluoride ions that were coupled to the phosphate atoms and were affected in the phosphate phases other than the element phases in the apatite. Consequently, if it was not affected too much, the desirable concentration of prenatal fluoride treatment could have a helpful effect on the bone crystal structure through placental fluoride transfer.

Removal of Uranium from Aqueous Solution by Alginate Beads

  • Yu, Jing;Wang, Jianlong;Jiang, Yizhou
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.534-540
    • /
    • 2017
  • The adsorption of uranium (VI) by calcium alginate beads was examined by batch experiments. The effects of environmental conditions on U (VI) adsorption were studied, including contact time, pH, initial concentration of U (VI), and temperature. The alginate beads were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Fourier transform infrared spectra indicated that hydroxyl and alkoxy groups are present at the surface of the beads. The experimental results showed that the adsorption of U (VI) by alginate beads was strongly dependent on pH, the adsorption increased at pH 3~7, then decreased at pH 7~9. The adsorption reached equilibrium within 2 minutes. The adsorption kinetics of U (VI) onto alginate beads can be described by a pseudo first-order kinetic model. The adsorption isotherm can be described by the Redlich-Peterson model, and the maximum adsorption capacity was 237.15 mg/g. The sorption process is spontaneous and has an exothermic reaction.

Gliclazide compatibility with some common chemically reactive excipients; using different analytical techniques

  • Jabbari, Hamideh Najjarpour;Shabani, Mohammad;Monajjemzadeh, Farnaz
    • Analytical Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • Evaluation of drug-excipient compatibility is one of the basic steps in the preformulation of pharmaceutical dosage forms. Some reactive excipients have been known so far which may cause stability problems for drug molecules in pharmaceutical dosage forms. The aim of this study was to evaluate drugexcipient compatibility of gliclazide with some common pharmaceutical excipients, known for their ability to incorporate in drug-excipient interactions. Binary mixtures were prepared using lactose, magnesium stearate, polyvinylpyrrolidone, sodium starch glycolate, polyethylene glycol 2000 and dicalcium phosphate. Based on the results; gliclazide was incompatible with all tested excipients; but not with dicalcium phosphate. DSC (Differential Scanning Calorimetry) results were in accordance with HPLC (High Pressure liquid chromatography) data and were more predictive than FTIR (Fourier Transform Infrared Spectroscopy). Drug and reactive excipients incompatibility was fully discussed and documented. It is advisable to avoid incompatible excipients or carefully monitor the drug stability when incorporating such excipients in final formulation designs.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Identification of the geographical origin of cheonggukjang by using fourier transform near-infrared spectroscopy and energy dispersive X-ray fluorescence spectrometry (근적외선분광분석기 및 에너지 분산형 X선 형광분석기를 이용한 청국장 원산지 판별)

  • Kang, Dong-Jin;Moon, Ji-Young;Lee, Dong-Gil;Lee, Seong-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.418-423
    • /
    • 2016
  • This study was conducted to identify the geographical origin of soybeans in Cheonggukjang by analyzing its organic components and inorganic elements with Fourier transform near-infrared spectroscopy (FT-NIRS) and with energy dispersive X-ray fluorescence (ED-XRF) coupled with multivariate statistical analysis. For method development, 280 samples from various regions were collected and analyzed. The discriminant accuracy for the developed methods was 97.5% for FT-NIRS and 98.0% for ED-XRF with multivariate statistical analysis. A validation test confirmed the discriminant accuracy to be 96.3% for FT-NIRS and 95.0% for ED-XRF. Overall, the results showed that methods using FT-NIRS and ED-XRF could be used to identify the geographical origin of Cheonggukjang.

Extraction of dietary fibers from cassava pulp and cassava distiller's dried grains and assessment of their components using Fourier transform infrared spectroscopy to determine their further use as a functional feed in animal diets

  • Okrathok, Supattra;Thumanu, Kanjana;Pukkung, Chayanan;Molee, Wittawat;Khempaka, Sutisa
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1048-1058
    • /
    • 2022
  • Objective: The present study was to investigate the extraction conditions of dietary fiber from dried cassava pulp (DCP) and cassava distiller's dried grains (CDG) under different NaOH concentrations, and the Fourier transform infrared (FTIR) was used to determine the dietary fiber components. Methods: The dried samples (DCP and CDG) were treated with various concentrations of NaOH at levels of 2%, 4%, 6%, and 8% using a completely randomized design with 4 replications of each. After extraction, the residual DCP and CDG dietary fiber were dried in a hot air oven at 55℃ to 60℃. Finally, the oven dried extracted dietary fiber was powdered to a particle size of 1 mm. Both extracted dietary fibers were analyzed for their chemical composition and determined by FTIR. Results: The DCP and CDG treated with NaOH linearly or quadratically or cubically (p<0.05) increased the total dietary fiber (TDF) and insoluble fiber (IDF). The optimal conditions for extracting dietary fiber from DCP and CDG were under treatment with 6% and 4% NaOH, respectively, as these conditions yielded the highest TDF and IDF contents. These results were associated with the FTIR spectra integration for a semi-quantitative analysis, which obtained the highest cellulose content in dietary fiber extracted from DCP and CDG with 6% and 4% NaOH solution, respectively. The principal component analysis illustrated clear separation of spectral distribution in cassava pulp extracted dietary fiber (DFCP) and cassava distiller's dried grains extracted dietary fiber (DFCDG) when treated with 6% and 4% NaOH, respectively. Conclusion: The optimal conditions for the extraction of dietary fiber from DCP and CDG were treatment with 6% and 4% NaOH solution, respectively. In addition, FTIR spectroscopy proved itself to be a powerful tool for fiber identification.

Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum (알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사)

  • Seo, Youngkyun;Jung, Jung-Yeul
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2020
  • This study investigated the methodologies to enhance the corrosion resistance and the ways to measure for subsea equipment made of aluminum. The methodologies for the anticorrosion were cathodic protection, conversion coating, anodizing and organic coating. The simply analyzed ways to measure the corrosion resistance were Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), contact angle and interfacial tension. The most widely used tools for increasing the corrosion resistance were the anodizing and the organic coating. Many ways were evenly used to measure corrosion. The methods more frequently utilized were SEM for the surface investigation and the contact angle to evaluate the corrosion resistance.

Experimental Study of the Phase Equilibria for $CO_2$ in Liquified Natural Gas Components at 77-219K

  • Yun, Sang-Kook
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 2003
  • In order to prevent roll-over and a rapid boil-off of LNG in tanks, the phase equilibria of carbon dioxide in liquefied natural gas components as binary mixtures at cryogenic temperatures have been experimentally measured using Fourier transform infrared spectroscopy in conjunction with a specially designed variable pressure/temperature cryostat cell (pathlength 2 mm; pressures up to 30 bar). Solid carbon dioxide has been found to be comparatively soluble in liquid nitrogen (3.25$\times$${10}^{-6}$ mole fraction), liquid methane (1.04$\times$${10}^{-4}$ mole fraction), liquid ethane (3.1$\times$${10}^{-2}$ mole fraction) and liquid propane (6.11$\times$${10}^{-2}$ mole fraction) at their normal boiling temperatures. The solubilities of carbon dioxide in various cryogens, which increased with increasing temperature, are much lower than those obtained by others using gas chromatography. The differences are attributed to infrared spectroscopy selectively measuring dissolved solute in situ whereas gas chromatography measures microscopic particulate solid in addition to dissolved solute.

The study of SiON thin film for optical properties. (SiON 박막의 광학적 특성에 대한 연구)

  • Kim, D.H.;Im, K.J.;Kim, K.H.;Kim, H.S.;Sung, M.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in $300^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying $NH_3$ gas flow rate. As $NH_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES (optical emission spectroscopy). N-H bonding($3390cm^{-1}$ ) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in $SiH_4$

  • PDF