• Title/Summary/Keyword: Fourier Function

Search Result 612, Processing Time 0.024 seconds

A Development of a Dynamic Load Function for a composite Deek Floor System (합성데크를 사용한 바닥판의 동적하중 이론식 개발)

  • 김태윤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.127-134
    • /
    • 1999
  • Vibration problem occurring at the metal deck floor system not only reduces the serviceability of a building but also reduces the usability of a floor system. Most problem occurring at the metal deck floor results from the human movement such as walking and running. However the vibration induced by running does not occur continuously except the special case. therefore the floor vibration due to walking was only considered on this paper,. Vibration occurring due to human walking was measured and the corresponding load function was derived through the Fast Fourier Transform(FFT)

  • PDF

Joint-characteristic Function of the First- and Second-order Polarization-mode-dispersion Vectors in Linearly Birefringent Optical Fibers

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.228-234
    • /
    • 2010
  • This paper presents the joint characteristic function of the first- and second-order polarization-modedispersion (PMD) vectors in installed optical fibers that are almost linearly birefringent. The joint characteristic function is a Fourier transform of the joint probability density function of these PMD vectors. We regard the random fiber birefringence components as white Gaussian processes and use a Fokker-Planck method. In the limit of a large transmission distance, our joint characteristic function agrees with the previous joint characteristic function obtained for highly birefringent fibers. However, their differences can be noticeable for practical transmission distances.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

CONVERGENCE AND POWER SPECTRUM DENSITY OF ARIMA MODEL AND BINARY SIGNAL

  • Kim, Joo-Mok
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2009
  • We study the weak convergence of various models to Fractional Brownian motion. First, we consider arima process and ON/OFF source model which allows for long packet trains and long inter-train distances. Finally, we figure out power spectrum density as a Fourier transform of autocorrelation function of arima model and binary signal model.

  • PDF

A DOMINATED CONVERGENCE THEOREM FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Ahn, Byung-Moo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.959-968
    • /
    • 2000
  • The existence of the operator-valued Feynman integral was established when a Wiener functional is given by a Fourier transform of complex Borel measure [1]. In this paper, I investigate a stability of the Feynman integral with respect to the potentials.

Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Cho, Dae-Hoon;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.