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CONVERGENCE AND POWER SPECTRUM DENSITY

OF ARIMA MODEL AND BINARY SIGNAL

Joo-Mok Kim

Abstract. We study the weak convergence of various models to
Fractional Brownian motion. First, we consider arima process and
ON/OFF source model which allows for long packet trains and long
inter-train distances. Finally, we figure out power spectrum density
as a Fourier transform of autocorrelation function of arima model
and binary signal model.

1. Introduction

Random processes find a wide variety of applications. The most com-
mon use is as a model for noise in physical systems. A second class
of applications concerns the modeling of random phenomena that are
not noise but are nevertheless unknown to the system designer. An
example would be a signal and image processing, digital control and
communications([4], [9]). On the other hand, the various models for cap-
turing the long-range dependent nature of network traffic is proposed and
self-similarity and long range dependence have been observed in many
time series, i.e. network traffic and finance([1], [2], [3], [5], [6]). In par-
ticular, fractional Brownian motion, ARIMA model and binary signal
in modern packet network traffic has been the focus of much attention
([7]).

In this paper we consider arrival process based on autoregressive pro-
cess and FARIMA process and show that the suitably scaled distribu-
tions of those processes converge to fractional Brownian motion in the
sense of finite dimensional distributions. On the other hand, we consider
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idealized ON/OFF source model which allows for long packet trains and
long inter-train distances. In particular, we figure out the coefficients of
BH(t) and time t in the case of having Pareto distribution as ON/OFF
periods. Finally, we has considered power spectrum densities of arima
process and binary signal process.

In section 2, we define short range dependence, long range depen-
dence, fractional Brownian motion, farima process and power spectrum
denity. In section 3, we prove the weak convergence to Fractional Brow-
nian motion of arima process. In section 4, we consider ON/OFF source
model which allows for long packet trains and long inter-train distances.
In section 5, we figure out power spectrum density of arima process and
binary signal process.

2. Definition and preliminary

In this section we first define short range dependence, long range
dependence, Fractional Brownian motion, FARIMA process and power
spectrum density. Let τX(k) be the covariance of stationary stochastic
process X(t), i.e. τX(k) = Cov(X(t), X(t+ k)).

Definition 2.1. A stationary stochastic process X(t) exhibits short
range dependence if

∞∑
k=−∞

|τX(k)| <∞

Definition 2.2. A stationary stochastic process X(t) exhibits long
range dependence if

∞∑
k=−∞

|τX(k)| =∞

Definition 2.3. A stochastic process {BH(t)} is said to be a Frac-
tional Brownian motion(FBM) with Hurst parameter H if

1. BH(t) has stationary increments
2. For t > 0, BH(t) is normally distributed with mean 0
3. BH(0) = 0 a.s.
4. The increments of BH(t), Z(j) = BH(j + 1)−BH(j) satisfy

τZ(k) =
1

2
{|k + 1|2H + |k − 1|2H − 2k2H}
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Definition 2.4. A stationary process Xt is called a FARIMA(p, d,
q) process if

φ(B)∇dXt = θ(B)Zt

where φ(B) = 1− φ1B − · · · − φpBp, θ(B) = 1− θ1B − · · · − θqBq and
the coefficients φ1, · · · , φp and θ1, · · · , θq are constants,

∇d = (1−B)d =
∞∑
i=0

bi(−d)Bi

and B is the backward shift operator defined as BiXt = Xt−i and

bi(−d) =
i∏

k=1

k + d− 1

k
=

Γ(i+ d)

Γ(d)Γ(i+ 1)
.

Now, we define a density for average power versus frequency for wide-
sense stationary process.

Definition 2.5. Let RXX(τ) be an autocorrelation function. Then
we define the power spectrum density(PSD) SXX(ω) to be its Fourier
transform (if it exits), that is,

SXX(ω) =

∫ ∞

−∞
RXX(τ)e−iωτdτ.

3. Convergence of ARIMA

Let Xj(i) be the number of arrivals in the ith time unit of jth
source. Let

XM(i) =
M∑
j=1

(Xj(i)− E(Xj(i)),

and τ(k) denote the covariance of X1(i).

Lemma 3.1. ([6]) The stationary sequence

1

M1/2
XM(i)

converges in the sense of finite dimensional distributions to GH(i), where
GH(i) represents a stationary Gaussian process with covariance function
of the same form as τ(k), as M →∞.
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Lemma 3.2.

lim
T→∞

lim
M→∞

1

THM1/2

[Tt]∑
i=0

XM(i)

converges to {σ0BH(t)|0 ≤ t ≤ 1} in the sense of finite dimensional
distributions.
(a) (Long Range dependence) If

τ(k) ∼ ck2H−2, c > 0 and 1/2 < H < 1,

then σ2
0 =

c

H(2H − 1)
.

(b) If
∞∑
k=1

|τ(k)| <∞ and
∞∑
k=1

τ(k) = c > 0,

then σ2
0 = c.

(c) (Short Range dependence)

τ(k) ∼ ck2H−2, c < 0 and 0 < H < 1/2,

then σ2
0 =

c

H(2H − 1)
.

Proof. Set Zi = 1/M1/2XM(i). By Lemma 3.1, Zi converges in the
sense of finite dimensional distributions to GH(i) as M goes to infin-
ity. By Theorem 7.2.11 of [7], the finite dimensional distributions of

T−H
∑[Tt]

i=0 Zi converges to those of {σ0BH(t), 0 ≤ t ≤ 1}.

We consider a FARIMA(p, d, q) which is both long range dependent
and has heavy tails. FARIMA(p, d, q) processes are capable of modeling
both short and long range dependence in traffic models since the effect
of d on distant samples decays hyperbolically as the lag increases while
the effects of p and q decay exponentially.

Theorem 3.3 (FARIMA(0,d,0)). Let X i(j) = bi(−d)aj−i. Then

lim
T→∞

lim
M→∞

1

THM1/2

[Tt]∑
j=0

M∑
i=1

(Xj(i)) =

√
c

H(2H − 1)
BH(t).

Proof.

τ(k) =
(−1)k(−2d)!

(k − d)!(−k − d)!
∼ ck2d−1 as k →∞
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where H = d + 1/2,−1/2 < d < 1/2 and c =
Γ(1− 2d) sin(πd)

π
. By

Lemma 3.2, we get the result.

4. Convergence of binary signal

Suppose that there are M i.i.d. sources. Since each source sends its
own sequence of packet trains, it has its own reward sequence X(m)(t).
Therefore, the cumulative packet count at time t is

M∑
m=1

X(m)(t).

Rescaling time by a factor T , we consider the aggregated cumulative
packet counts

XM(Tt) =

∫ Tt

0

(
M∑
m=1

X(m)(u))du

in the interval [0, T t].

Lemma 4.1. The aggregate packet process {XM(Tt), t ≥ 0} behaves
statistically like

TM
µ1

µ1 + µ2

t+ TH
√
L(t)M σBH(t)

for large M and T .

Proof. ([8], Theorem 1)

To specify the distributions of ON-period O1 and OFF-periods O2,
let

µ1 = EO1, µ2 = EO2

and as x→∞, tailing distributions of O1 , O2 are

l1x
−α1L1(x) and l2x

−α2L2(x)

with 1 < αj < 2, where is a constant lj > 0 and Lj > 0 is a slowly
varying function at infinity.
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Notation. When 1 < αj < 2, set

aj = lj(Γ(2− αj))/(αj − 1),

b = lim
t→∞

tα2−α1
L1(t)

L2(t)
.

If 0 < b <∞ then set

σ2 =
2(µ2

2a1b+ µ2
1a2)

(µ1 + µ2)3Γ(4− αmin)
,

if b = 0 or b =∞ then set

σ2 =
2µ2

maxamin
(µ1 + µ2)3Γ(4− αmin)

.

Suppose that ON/OFF periods Oj has the Pareto distribution, then

P (Oj > x) = Kαjx−αj for x ≥ K > 0.

Each periods has infinite variance in the case of 1 < αj < 2.

Theorem 4.2. Let Oj be ON/OFF-periods that has the Pareto dis-
tributions as above. Then, for large M and T , the aggregate packet
process {XM(Tt) | t ≥ 0} behaves statistically like

TM
α1α2 − α1

2α1α2 − α1 − α2

t+ THσBH(t)

where, H = (3− αmin)/2 .
Case 1. Suppose that Oj have the same distributions, i.e., α1 = α2 = α,
then

H =
3− α

2
and

σ2 =
Kα−1Γ(2− α)

2αΓ(4− α)
Case 2. If α1 < α2, then

H =
3− α1

2
and

σ2 =
2K2α2

1(α1 − 1)(α2 − 1)3amin
(2α1α2K − α1K − α2K)3

Case 3. If α1 > α2, then

H =
3− α2

2
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and

σ2 =
2K2α2

2(α2 − 1)(α1 − 1)3amin
(2α1α2K − α1K − α2K)3

Proof. Since the expectation of the Pareto distribution is

αjK

αj − 1

for j = 1, 2, · · · . By Lemma 4.1, the coefficient of time t is

α1α2 − α1

2α1α2 − α1 − α2

.

Case 1. Since Oj have the same distributions, we get

lim
t→∞

tα2−α1 = 1.

And we know
α1 = α2 = KαΓ(2− α)/(α− 1).

Thus, we get

σ2 =
Kα−1Γ(2− α)

2αΓ(4− α)
In the similar way, we can get Case 2 and Case 3.

Let Xj(t) = 1 mean that there is a packet at time t and Xj(t) = 0
means that there is no packet. Viewing Xj(t) as the reward at time
t, we have a reward of 1 throughout an ON-period, then a reward of 0
throughout the following OFF-period, then 1 again, and so on.

Theorem 4.3. Let Xj(i) denote the increment process for the ith
stationary binary sequence Xj(t). Then

lim
T→∞

lim
M→∞

1

THM1/2


[Tt]∑
j=0

M∑
i=1

(Xj(i))− µ1Mt

µ1 + µ2

=

√
c

H(2H − 1)
BH(t).

Proof. We get
τ(k) ∼ ck2H−2,

as k →∞ and
E[Xj(i)] =

µ1

µ1 + µ2

if E[On period] = µ1 and E[Off period] = µ2. By Lemma 3.2, we get
the result.
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5. Power spectrum density of ARIMA and binary signal

Using the backshift operator B, the ARMA(p, q) model is expressed
as

(1− ρ1B − · · · − ρpBp)Yt = (1− θ1B − · · · − θqBq)et,

where et ∼ N(0, σ2) is white noise. Replace Bj with eiωj, getting

A(ω) = 1− ρ1e
iω − ρ2e

iω2 − · · · − ρpeiωp

on the autoregressive and

M(ω) = 1− θ1e
iω − θ2e

iω2 − · · · − θqeiωq

on the moving average side. Start with the spectral density of et, which
is σ2/2π. The spectral density for ARMA(p, q) process Yt becomes

fY (ω) =
σ2

2π

M(ω)M∗(ω)

A(ω)A∗(ω)
,

where A∗(ω) and M∗(ω) are corresponding complex conjugate expres-
sions of the complex polynomial A(ω) and M(ω).

Figure 1. PSD of AR(0.8) and AR(−0.8)

For autoregressive order 1 series AR(1), the theoretical spectral den-
sity is

f(ω) =
1

2π(1 + ρ2 − 2ρ cos(ω))
,

where ρ is the lag 1 autoregressive coefficient. Power spectrum density
in the case of ρ = 0.8, −0.8 is sketched in Figure 1.

For a moving average MA(1) such as Xt = et − θet−1, the spectral
density is

fX(ω) =
1

2π
(1 + θ2 − 2θ cos(ω)).
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Figure 2. PSD of MA(0.7) and MA(−0.7)

Figure 3. PSD of ARMA(0.8, 0.7) and ARMA(−0.8, 0.7)

Power spectrum density in the case of θ = 0.7,−0.7 is sketched in Figure
2.

If Yt has spectral density

fY (ω) =
1

2π(1 + ρ2 − 2ρ cos(ω))

and is filtered to get Dt = Yt − θYt−1, then the spectral density is

fD(ω) = (1 + θ2 − 2θ cos(ω))fY (ω)

=
1

2π
(1 + θ2 − 2θ cos(ω))/(1 + ρ2 − 2ρ cos(ω)).

Power spectrum density in the case of ρ = 0.8, θ = 0.7 and ρ = −0.8, θ =
0.7 is sketched in Figure 3.

On the other hand, we construct the RTS(random telegraph signal)
on t ≥ 0 as follows. Let X(0) = ±a with equal probability. Then take
the Poisson arrival time sequence T [n] and use it to switch the level of
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Figure 4. PSD of λ = 100 and λ = 50

the RTS, i.e., at T [1] switch the sign of X(t), and then at T [2], and
so forth. Clearly from the symmetry and the fact that the interarrival
times τ [n] are stationary and form an independent random sequence, we
must have µX(t) = 0 and that PX(a) = PX(−a) = 1/2. Let t2 > t1 > 0,
and consider

PX(x1, x2) = P [X(t1) = x1, X(t2) = x2]

along with

PX(x2|x1) = P [X(t2) = x2|X(t1) = x1].

Then the correlation function is

RXX(t1, t2) = E[X(t1)X(t2)]

=
1

2
a2(PX(a|a) + PX(−a| − a)−PX(−a|a)−PX(a| − a)).

Hence, writing the average number of transitions per unit time as λ,
and substituting τ = t2 − t1, we get

RXX(τ) = a2e−λτ
∑
all k≥0

(−1)k
(λτ)k

k!
= a2e−2λ|τ |.

The power spectral density of the autocorrelation function RXX(τ) is

SXX(ω) =
4λ

4λ2 + ω2
.

Power spectrum density of RTS signal in the case of λ = 100 and λ = 50
is sketched in Figure 4.
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