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A SHARP (H',L') CONTINUITY
THEOREM FOR THE RUBIO DE FRANCIA
MAXIMAL MULTIPLIER OPERATOR

Yong-Kum CHo

1. Introduction

Consider a function m defined in R™ and the associated convolution
operator T' given by the Fourier transform T = m f. The well-known
Hormander-Marcinkiewicz multiplier theorem asserts that if m satisfies

(1-1) sup / |D* m(€)|? d¢ < By R™loln
0<R<oo JR<|E|<2R

for all multi-indices a, |a| < [%J + 1, then T extends to a bounded

operator from LP(R™) to itself when 1 < p < co and is of weak type
(1,1) (See [3], [6] for details). A typical case occurs when m verifies a
stronger condition
(1-2) Dom(e)] < Calel e, fal <1 = [2]

Let us turn our attention to the corresponding maximal theory. We
shall be concerned about the operator described as

(1-3) T f(z) = sup T f(x)], (T f)TNE) = m(t€) F(£).

In this connection let us point out a theorem of Rubio de Francia
[5] which states that if m € C'*!'(R") and for all a, |a| <141,

(1-4) [IDm(z)] < Co(1+ |x])™* with some fixed a > 1/2,
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then T™ extends continuously to a mapping from L? (R") to L? (R")
provided 2n/(n+2a-1)<p < (2n—2)/(n — 2a).

The purpose of this note is to set up the (H!, L!)-inequality for T~
under a mild assumption on m in analogy with Hérmander-Marcinkie
wicz hypothesis (1-1). Specifically we shall prove

THEOREM 1. Suppose that there exist positive numbers a, b, 6
with a+b>1, &> 3/2 such that

(1) [m(&)] < CQA+[E)™  [Vm(E)] < C(L+EN,

(2) for all multi-indices a of order |a| = I, 1 +1,

sup / |D*m(€)]*dé < A R
1<R<oo JR<|E|<2R

Then we have the a priori continuity inequality
NT*flleiny < BIIfllae @)

We remark here that the first hypothesis is required to ensure the
L? boundedness (see [5], pp. 398). It is interesting to note that the sec-
ond hypothesis requires decays on the derivatives of m of only highest
orders. Our method reveals that it’s possible to have a slightly weaker
assumption, namely,

THEOREM 2. The hypothesis (2) of Theorem 1 may be replaced by

1+e¢
2y sup (/ | Dm(€)]*~ df) < Ao R7®
RLIEI<2R

1<R<0
for an arbitrarily small € >0 and a, |a| =1 1+1.

By the standard interpolation and well-known duality argument be-
tween the Hardy space H'(R™) and BMO(R™), the above theorems

implicate instantly that

T fller ey < Cpllfllir@mny, 1 <p<oo
and moreover the pointwise convergence property

lim [ flz —ty) K(y)dy = f(z) ae,

—_— mn

where K = m, f € LP(R™), 1 < p < oo. Throughout this paper,
C will stand for a positive constant which may be different in each
occurrence.
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2. Preliminary Settings

In preparation for the proof, we begin with collecting more or less
known results and techniques which are relevant to our purposes (re-

fer [5], [6] and [7]). Choose a radial bump function ¥ € C>(R"™)

satisfying ¢
1, <1

Let us set ¢(£) = ¥(€)~w(2¢) so that supp(¢) C {1/2 < |¢] < 2)

and '
YE) + ) $(277¢) =1 forall £#0.

j21
It follows that we have a Littlewood-Paley decomposition for m,
m(€) = $(E)m(€) + Y ¢(277 )m(€) = (&)m(E) + Y m;(¢)
i>1 i>1

and consequently we get the majorization T* f(z) < M*flz) + 3,5,
T} f(z), where M*, T} denote the associated dyadic maximal opera-
tors.

It turns out that M* behaves extremely nice (see [5], pp. 398) so
we only concentrate on studying T, j 2 1. A simple application of
the fundamental theorem of calculus shows that

. /2
T3 () < (28 £(2) 5, o))
= 22(S; f)x) + 271%(8; f)lz),
where

o dry 4
sjf(:r)=(/0 TP
_ o _ i
Sit@=([ mi@rs)’,

(T} £) (&) =m;(t€) f(€),
(T F)(€) =m; (&) (&),
m;(€) =Vm;(é) - €.
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LEMMA 1. The condition (1) of Theorem 1 implies that T* is
bounded in L%(R™).

Proof. The proof follows from the easy observation

(2-1) N7 fllz < C llmjlIL% i 1121112 O

Let us turn now to a brief description of the Hardy space H'(R").
This space is an extremely nice subspace of L'(R") , elements of which
are stable under various singular and maximal operators. In particualr,

H'(R") = {f¢ LY(R"|R;f € L'R™), j=12,-- ,n},

where R; denotes the Riesz transforms (R; f)T(£) = cn %, 1<

j < n. More importantly it admits the atomic decomposition for each
element. A function a is called an H'(R")-atom if there exists a cube

Q such that

(1) supp (a) C @
(2) / a(z)dz = 0, la|lz2rm < 1QI72
Q B

According to R. Latter [4], any f € H'(R™) can be decomposed
into f = 3. Ag ag where ag is an atom and scalars Aq satisfy

Yo lxel < Clifllar = Ifllea@wny + Zj=y IR flzmn) - We shall
need the following simple fact

LEMMA 2. Suppose that T is an L*-bounded sublinear operator
and for each H'-atom ag supported in a cube @,

/A IT ag(x)|dz < A,
cQ

where °Q denotes the complement of Q@ and Q the 2-fold concentric
dilate of Q. Then T maps H'(R™) continuously into L'(R"). More
precisely, we have ||T f |l < C(I[Tllz2 + A)IIf I
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Proof. For f =3 Ag ag belonging to the Hardy space, we have

ITfllzs < 3 |AQ|/|TaQ(x>|dx
=3 Pel (/Q Taglo)ldz + [ Tag@) e ).

It follows from the Cauchy-Schwartz inequality that

/Q|Taa(w>|dm < 1Q 12 || Tag 2

T 12,2 1Q'/* |lag Il
T {122 1Q1*1Q 172 < C||T 2,2

IAIA

Therefore,

ITfllee < CUITI22+4) D ol < C(iTllz + A fllan. O

3. Proof of The Main Theorem

Notice first that
(3-1) NTy flly < 272185 Flln + 272721185 £ Ih

and we may view our square functions S;, S; as Hilbert space-valued
linear operators

Sj f(:L‘) = (TJt -f(‘l'))L’((O,oo);dt/t) ’
5 f(z) = (T} f()

L%((0,00); dt/1)

so that we may appeal to Lemma 2 for their mapping properties. Take
an H'-atom a supported in a cube Q.
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LEMMA 3. For j > 1 and an arbitrarily small € > 0,

(3-2) / |Sja(z)|dz < C270+e=0)
@

Proof. Using the translation invariance of our operator, we may as-
sume the center of Q lies at the origin. By the Cauchy-Schwartz
inequality

Sjax dr = x H":U"Sa dz
[Qf (2)] [Q“ j2/'=¢| 5, a(x) |

1/2 1/2
(/ I@_,—?H—Ze d’L‘) (/ |.’L‘|21 —~2€ I S a ,2 d:l‘)
°Q °Q

1/2
< C|QIFtw-w (/ 2|21=2¢|S; a(z)|? dx) .
‘Q

IA

Denoting by /(Q) the side-length of @, we observe that

[Q |2|*72¢1S; a(z)]* dz = /Oo/ (212 Tt o) dzﬂ
= (/I(Q) /(m) / | |22 T a(z)|? dxﬂ

= (D) +11).

With f;’j = m;, Ki(z) = t7" K;(a/t), we note that

2

1/2
IT! af2)] = K+ ()] = |falla (/Q lfx';<m—y>|2dy)

I(Q) dt
(I)SIQI"’/ /_lxlz’-'“/ |K} (z - y)|* dy dz —
0 cQ Q t

SO
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Since |z — y| & |a| wheneveraz € ‘Q,y € Q,

Q) gt
@M< 19" / / / e 2| K () ? d dy
0 Q Jmr t
I(Q) dt
S/ t2l—26—n_/ |xl2!-—2( lI\’j(1})|2dl'
0 t Jgn
2 _2¢ 21—2¢ | 1~ 2
= 1QIFF [ e (e

Applying the basic properties of the Fourier transform and the frac-
tional integration theorem of Hardy-Littlewood-Sobolev ([7], pp. 354
), we get

—_ rd —€ g 2
| P @ de = [ el el K@) e

2
= c/ €17 % > DPmy(€)| dt
" |81=t
= C Z /];n l|§|_"+‘ * DP m;{£) |2 dé

181=t

IA

c 2 (/m IDﬂmj(ﬁ)l”dE)z/p, 1/p=1/2+¢/n.

|18|=1

If we make use of Holder’s inequalty, then

2/p 2/p
( / | DFmj(€) P de) ( / | | DPmy(6) P d¢>
B 2i-1<|g|<+

< obie / | DPmy () de
2-1<lg|<2i+

and therefore by hypothesis (2), we are led to

2! 2¢

(1) < CQIF %1988,
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For the part (II) we use the vanishing property of atoms to write
down

T! a(z) = /Q (o —y)aly) dy

:/Q [K}(.r—y)—K;(x)} a(y) dy
= Z // y)’D”’I& (x —sy)a(y)dsdy,

iv|=1

where the last equality comes from Taylor’s theorem. Hence

IT!a(z)] < C|Q|7~% (// D] K a,*ay|dsdy)

and it follows that

E 1 dt
(< clojE-! / / I~2¢ / / |D} K} (z - sy)|* ds dy de —
Q) Q Jo t

) ) , i
<C’|Q|n/ im0k @ de
(Q) m?l t

1/2

<ci¥ =¥ [ it~ (al D K, ()] da

2/
ccle¥- 3 ([ 0t @ m@irde) . p=1/2+em
T
<c ey f | DA (e my(€)) 2 d
|;§=:1 2 -1g|g]<as+1 ’

as before. Here recall |y] = 1 and the hypothesis (2) shows then

(II) < Cl ——-——15)2](1+E 5)

Combining both estimates, we finish the proof. O

Now it’s a relatively easy matter to state
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LEMMA 4. For j > 1 and an arbitrarily small € > 0,

c

(3-3) /Q 15, a(z) de < C2IC+8).

Proof of Theorem 1. Since || Sjll22 < 2770 || S'j 2,2 < 27 (1=b)
Lemma 2 gives us

1S; Flle < € (29+9 4277) || £l

135 Flle < € (22249 +27070) | f 1

and consequently (3-1) shows
175 Fllp < € (20 4+ 20 ) i f
Upon summing this geometric series, the proof is now completed. [
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