• Title/Summary/Keyword: Foundation stone

Search Result 159, Processing Time 0.027 seconds

Material Analysis and Deterioration Evaluation of Foundation Stones and Holy Stone Relics in Myeongdongseongdang Cathedral, Korea (명동성당 석조성물 및 기초석의 재질분석과 손상도 평가)

  • Kim, Jiyoung;Ha, Eun Young;Lee, Myeong Seong;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.305-319
    • /
    • 2012
  • The Myeongdongseongdang Cathedral, which was designated as Historic Site No. 258 in Korea, is a representative cathedral of Korean Catholic church designed by a French priest Eugene-Jean Georges Coste and completed in 1898. It is a Gothic-styled architecture constructed with bricks and stones. Lithological and mineralogical analyses determined that holy stone relics were made of marble and granite, and foundation stones are of pink feldspar granite. Deterioration mapping and ultrasonic measurement revealed main weathering and damage were exfoliation (40%) and black discoloration (37%) in the holy water basin, and exfoliation (6%) and discoloration (46%) in the exterior foundation stones. Ultrasonic velocity of the stones were calculated as 3,525m/s in the holy water basin and 2,795m/s in the exterior stones that indicated these stones were sorted into moderately to highly weathered rock. This was resulted from moisture and atmospheric pollutants around the cathedral.

A Study on the Yeongam Eupseong (Town Fortress) (영암읍성(靈巖邑城) 소고(小考))

  • Kim, Young-Pil
    • Journal of architectural history
    • /
    • v.20 no.5
    • /
    • pp.47-61
    • /
    • 2011
  • This study examined the background and change of building Yeongam eupseong and characteristics and construction method of its spatial structure. The results of this study can be summarized as follows. First, Yeongam eupseong was built for the same purpose of national border defense against the invasion of Japanese army as other Eupseongs were built and it was found first in the literature in the era of King Munjong of Joseon Dynasty with the scale of three gates and 4,369 cheok of castle wall. Such a scale was continued and in particular, according to flat structure, road network and gate position shown in the map, the form and road system of Yeongam eupseong before the 19th century were mostly identical with the current ones. Second, castle wall was built over foundation by using talcum after leveling the foundation soil and castle wall can be divided into outer wall, filling part and inner wall from the section. Outer wall was constructed by inserting and layering pebbles with big irregular stone, filling part was made with talcum and riprap and inner wall with soil in several layers by keeping gradient. This building method showed common features in inserting and layering pebbles for outer wall, use of protruded base and section form compared to Jeollado Eupseong.

A STUDY OF THE CONSTELLATION MAPS IN MT. TAEBAEK'S HARVEST CEREMONY FLAG (태백산 개천절 제의 깃발에 그려진 별자리 연구)

  • Yang, H.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.119-128
    • /
    • 2010
  • Gaecheonjeol is the National Foundation day of Korea when people hold a harvest ceremony. Nowadays, two representative harvest ceremonies of Korea are performed at Mt. Mari (摩利山) and Mt. Taebaek (太白山) on Gaecheonjeol (October 3rd). We study 28 flags with constellations appearing in the ceremony of Mt. Taebaek. These flags are lying in the outer of the circular stone wall during the ceremony. They represent an oriental heavenly star chart. We examine the shape, the connecting-pattern, the name, and the number of constellations drawn in the flags, and find several errors, such as, a wrong position, a typo of name, an irregular size, an omission, and so forth. Traditionally, the 28 oriental constellations are usually divided into four groups and each group has its own colour for each direction: Blue (E), Black (N), White (W), and Red (S). For the constellation flags in Mt. Taebaek, the colour of the flags is painted based on geographical directions, but the constellations are arranged followed by the direction of the celestial sphere. Thus, constellations in the northern and southern parts are counterchanged. Finally, we suggest some possible criteria for constellation map of the flags in this paper. CheonSangYeolChaBunYaJiDo (天象列次分野之圖) and CheonMunRyuCho (天文類抄) can be essential references for correcting constellations drawn in the flags of Mt. Taebaek.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF

A Study on the Repair Method for Performance Degradation Cause of Korean Arch Bridge -Focused on the Seonamsa Seungseonggyo, Songgwangsa Geukrockgyo- (홍예교 성능저하 원인에 따른 보수방안 고찰 - 선암사 승선교·송광사 극락교를 중심으로 -)

  • Kim, Jeong-Eon;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.23 no.1
    • /
    • pp.7-19
    • /
    • 2014
  • This study considers the proper repair techniques by examining the most representative repair cases of the Korean arch bridges and proposes the constructional manual which can apply similar occasions. The cases are Seonamsa Seungseongyo and Songgwangsa Geukrockgyo where this researcher had taken part in the repair works. This Study proposes the maintenance construction manual about the performance degradation drew by performance degradation of the both Korean arch bridges in the maintenance process. First, arch bridge maintenance should be carried out in the dry season, when water is impermeable in the bottom surface of the bridge. Moreover, risk factors of the maintenance should be excluded to secure the water vally flow, the bypass and the temporary bridge. Second, prior to repair, it has to precede (1)3D shooting (2)formal examination (3)structure safety test (4)geological and lithic surveys (5)arch curvature establishment and makeshift frame settlement before transformation (6)relationship expert comments. Third, if the baduk and the foundation stones are inevitable to replace due to performance degradation on the foundation, it should use the high quality stones and secure greater stress by extending the standard range. The foundation on irregular rock needs to be flattened and underside on the replaced materials require Grengyijil to deliver the equal loads. Fourth, In the process of dismantling the stones of the arched bridge, it could make heavy weathering degree and not reuse the materials. Charge should converge the expert advices to choose the reuseable, the conservate and the alternative materials, and increase the reutilization of the raw materials by preservation and reinforcement treatments. Fifth, the side wall should be repaired by the rubble work technique which is not able to pile compost satiety, so it must use long depth of masonary stones for reinforcement. It is considered to reinforce the stone wall in shore as much as possible and protect the abutment and the side wall on the upstream for the arch bridge maintenance works.

The Making and Use of the Bifid Ornamental Hairpin Stone Mold Excavated at Neungsan-ri, Buyeo (부여 능산리 출토 가랑비녀 용범(鎔范)의 제작과 사용 양상)

  • LEE, Soleon;KIM, Jiyoung;SEO, Hyunju
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.4-21
    • /
    • 2021
  • A stone mold from the Sabi period of Baekje was excavated at the western tombs in Neungsan-ri, Buyeo where there was a recent excavation survey (2016). It was believed and reported that such stone molds were used for copper needles during the early Iron Age; however, a close re-examination of the form revealed that they were used for bifid ornamental hairpins. Given its casting form, the stone mold of Neungsan-ri is estimated to have been used to make bifid ornamental hairpins in a ∩ shape, narrowing down toward the tip. It is considered an artifact of the Goryeo dynasty. The stone used to make the bifid ornamental hairpin mold of Neungsan-ri was chlorite-schist, the principal minerals of which include chlorite, amphibole, and talc. Similar rocks are in nearby Buyeo (Oesan-myeon), Cheongyang, Gongju, and Yesan. They are mainly found between Jiseon-ri, Oesan-myeon, Buyeo, Sucheol-ri, Yesane-up, and Yesan. Nearly 70 bifid ornamental hairpins from the Goryeo dynasty were excavated at Neungsan-ri, Buyeo and the surrounding areas. Among them, the bronze ones excavated from the tombs of Songguk-ri, Buyeo are estimated to have been made using this mold as they closely resemble the Neungsan-ri mold. Stone was likely the preferred material for molds to make bronze artifacts as it was easy to sink a die. Regarding the bifid ornamental hairpin cast excavated in Neungsan-ri, they obtained stones in nearby areas 20~50km from their location, made bronze artifacts, and distributed them to nearby sites during the Goryeo dynasty. These artifacts suggest that the casting technology of using a stone mold was still employed then.

Geophysical exploration for the Site Charcteristics of Iljumun Gate in Hwanseongsa Temple (지구물리탐사를 이용한 경산시 환성사 일주문 지반조사)

  • Kim, Ki-Hyun;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.131-136
    • /
    • 2008
  • We performed a non-destructive geophysical survey such as an elastic wave survey, electric specific resistance survey, plate loading test, etc. in order to grasp the structure and status of the ground around the pillar gate and to provide the directions and design data for preservation and maintenance during reconstruction. The result of electric specific resistance survey shows 50-1300 ohm-m range of general electric specific resistance distribution. Besides, the positions around 1m south of stone pillars, between stone pillar No.3 and 4, and 1m north of stone pillar No.2 and 3 show abnormality of relatively lower electric specific resistance than their surroundings. The abnormality of low electric specific resistance appearing between stone pillar No.3 and 4 shows consistency with the abnormal section appearing from the result of elastic wave reflection survey. The result of a plate loading test shows that allowable bearing force is over $10.70tf/m^2$, and the settlement amount at this time was calculated as 19.635mm. The design load during reconstruction of pillar gates was calculated as $16.37t/m^2$ by applying assumption values, which is far more than the allowable bearing force, so it is judged that a measure to strengthen the foundation ground is necessary.

  • PDF

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF

Review of the square footstone of the wooden pagoda site in Hwangnyongsa Temple (황룡사 목탑지 방형대석 검토)

  • Kim, Dong-Yeol;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.24 no.5
    • /
    • pp.33-40
    • /
    • 2015
  • The present study is aimed to reconsider the time of installation and the purpose of the square footstone located at the center of the wooden pagoda in Hwangnyongsa Temple, based on related precedent studies. Precedent studies are divided into two streams of assertions: one is that the square footstone was to support the major pillars at the time of building and the other is that it was installed to store Buddhist reliquaries inside the central foundation stone after the wood pagoda burnt down in the Invasion of Mongol. Summarizing the grounds with which the precedent studies support their assertions, they are the relation with Gaseopbul Yeonjwaseok, the emerging time of the square footstone, repairing work at the level of reconstruction, additional enshrinement of general Buddhist reliquaries and so on. The present study reviewed the key grounds suggested in the previous studies regarding the square footstone. First, it was determined that the square footstone has nothing to do with Gaseopbul Yeonjwaseok, after looking into the timings of appearance, condition and shape in literatures. Rather, it was assumed that Gaseopbul Yeonjwaseok resembles a stone column. Next, the square footstone is assumed to be installed after the 4th year of King Kwangjong's rule because the wood pagoda was lost in fire in the 4th year of Kwangjong's rule and it had been left alone for 68 years until the repair work finished in the 13th year of King Hyunjong. It is assumed that repair works at the level of reconstruction had been twice in total, say, once during King Kyungmun and Hyunjong, respectively. Next, looking into the establishment of the general Buddhist reliquaries and the repair work during King Kyungmun, it was not common then to enshrine additional Buddhist reliquaries when repair work progressed and so there was not an additional enshrinement of Buddhist reliquaries after King Kyungmun. However, it is hard to decide that there was no repair work at the level of reconstruction at that time. Last, we can find a similar case to the square footstone of the wood pagoda in Hwangnyongsa Temple in the copper pagoda in Japanese Yaksasa Temple. In conclusion, it is assumed that the wooden pagoda in Hwangnyongsa Temple was lost to the fire in the 4th year of King Kwangjong's rule and thus the square footstone had been used as Jinho stone to protect Buddhist reliquaries and used as a propping stone for the major pillars after King Hyungjong.