• Title/Summary/Keyword: Foundation failure

Search Result 337, Processing Time 0.021 seconds

Dynamic Behavior and Seismic Fragility Analysis of Shallow Foundation Bridge Considering Scour (세굴을 고려한 얕은 기초 교량의 동적거동 분석 및 지진 취약도 해석)

  • Kim, Na-Yeon;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.79-89
    • /
    • 2016
  • If scour is occurred at shallow foundation of bridge, seismic performance of the bridge will be reduced. In order to evaluate accurate seismic response of bridge according to scour depths, modeling of foundation reflecting scour effect is important. In this study, taking into account the effect of the reduction in embedment depth of the shallow foundation by scouring, the soil around the foundation is modelled as an equivalent soil spring with various stiffness. Seismic fragility analyses for 3 types of bridges subjected to 4 types of ground motions classified into Site Class A, B, C, D are evaluated according to several scour depths. From the fragility analysis results, it can be observed that the deeper the scour depth, the higher probability of exceeding damage states. Also, seismic failure probability of asymmetric bridge is higher than that of symmetric bridge.

Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes

  • Mahmoodi, Khadije;Noorzad, Ali;Mahboubi, Ahmad
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.483-495
    • /
    • 2020
  • Dams are vital infrastructures that are expected to maintain their stability during seismic excitations. Accordingly, cemented material dams are an emerging type, which are being increasingly used around the world owing to benefiting from advantages of both earth-fill and concrete gravity dams, which should be designed safely when subjected to strong ground motion. In the present paper, the seismic performance of a cemented sand and gravel (CSG) dam is assessed using incremental dynamic analysis (IDA) method by accounting for two failure modes of tension cracking and base joint sliding considering the dam-reservoir-foundation interactions. To take the seismic uncertainties into account, the dam is analyzed under a suite of ground motion records and then, the effect of friction angle for base sliding as well as deformability of the foundation are investigated on the response of dam. To carry out the analyses, the Cindere dam in Turkey is selected as a case study, and various limit states corresponding to seismic performance levels of the dam are determined aiming to estimate the seismic fragilities. Based on the results, sliding of the Cindere dam could be serious under the maximum credible earthquake (MCE). Besides, dam faces are mostly to be cracked under such level of intensity. Moreover, the results indicate that as friction angle increases, probability of sliding between dam and foundation is reduced whereas, increases tensile cracking. Lastly, it is observed that foundation stiffening increases the probability of dam sliding but, reduces the tensile damage in the dam body.

Failure Characteristics of Foundation System Reinforced with Stone Columns (쇄석말뚝으로 보강된 기초시스템의 파괴 거동)

  • Shin, Bang Woong;Bae, Woo Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.71-80
    • /
    • 2001
  • The quantitative analysis of bearing capacity with stone column-mat is not ease because the bearing capacity of stone column is affected by so many parameters. The bearing capacity of stone column is mainly governed by horizontal resistance along the interface with soil. Also, this foundation system is affected by geometric factors such as column spacing, embedment ratio and failure surface inclination. Therefore, in this study, critical length and the effect of failure surface inclination was studied with single and group end bearing stone columns by loading tests. Results of model tests are compared to the present theoretical methods and are examined with FEM analysis.

  • PDF

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt model

  • Zhu, Hong-Hu;Liu, Lin-Chao;Pei, Hua-Fu;Shi, Bin
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.67-78
    • /
    • 2012
  • Soil foundations exhibit significant creeping deformation, which may result in excessive settlement and failure of superstructures. Based on the theory of viscoelasticity and fractional calculus, a fractional Kelvin-Voigt model is proposed to account for the time-dependent behavior of soil foundation under vertical line load. Analytical solution of settlements in the foundation was derived using Laplace transforms. The influence of the model parameters on the time-dependent settlement is studied through a parametric study. Results indicate that the settlement-time relationship can be accurately captured by varying values of the fractional order of differential operator and the coefficient of viscosity. In comparison with the classical Kelvin-Voigt model, the fractional model can provide a more accurate prediction of long-term settlements of soil foundation. The determination of influential distance also affects the calculation of settlements.

A Study on Shell Foundation Behaviour in Cohesionless Soil (사질토 지반에서 Shell 기초 거동에 대한 연구)

  • Kim, Sang-Hwan;Lee, Chung-Hwan;Choi, Chung-Sic
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1144-1154
    • /
    • 2008
  • In this paper, the behaviour of shell foundation was studied. In order to perform this study, three studies such as theoretical, numerical and experimental programs were performed. In the theoretical program, the general shallow foundation theories and failure mechanism developed by Terzaghi, Mayerhof and others were reviewed and compared. Based on the previous shallow foundation behaviour, the shell foundation theory was developed using the upper boundary theorem. In the numerical study, the 2 and 3 dimensional FEM simulations were carried out using an uncoupled-analysis approach. From the analysis results, the adequate depth of shell foundation was evaluated. It was also evaluated the bearing capacity according to the shell angle ($120^{\circ}$, $90^{\circ}$, $60^{\circ}$). In the experimental study, the laboratory model tests were carried out for five cases of different foundation shapes including the rectangular and circular foundation in order to verify the theoretical and nemerical study. According to the results of this study, the bearing capacity of shell foundation was theoretically about 15% larger than that of general foundation. However, in the model test, the bearing capacity of shell foundation was about 25 to 30% larger than that of general foundation. In the case of shell angle, the maximum bearing capacity of shell foundation shows when the shell angle of foundation was $60^{\circ}$. In addition, Even if the shell foundation has the various advantages compared with the general foundations as described above, the practical verifications in full scale size will be necessary to use in the field and will be helpful in the technical development of other special foundations.

  • PDF

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

A Case Study of Bridge Scour Vulnerability Evaluation and Prioritization for National Highway Bridges in the National Capital Region (수도권 국도교량 세굴위험도 평가 및 등급화 사례 연구)

  • Park, Jae-Hyun;Kim, Jeong-Hun;An, Seong-Chul;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.7-21
    • /
    • 2008
  • Foundation failure due to bridge scour during floods is the leading cause of bridge failure. Performed were the evaluation of bridge scour vulnerability and prioritization on real bridges registered in the National Highway Bridge Inventory of the capital region. The case studies for 30 national highway bridges consist of site investigation including boring test, bridge scour analysis fur the design flood, bearing capacity evaluation of the bridge foundation before and after scour, comprehensive evaluation of bridge scour vulnerability, and prioritization. Nine of 26 spread (feting bridges showed the potential future vulnerability to scour with significant decrease in the bearing capacity of foundations due to scour and the remaining 17 spread footing bridges were expected to maintain their stability to resist the effects of scour. Three of 4 pile foundation bridges exhibited considerable decrease in the bearing capacity of foundation after scour.

Reliability Analysis on the Decision Method of Lateral Flow of Foundation Piles for Abutment (교대 기초말뚝의 측방유동 판정식에 관한 신뢰성 해석)

  • Ahn, Jong-Pil;Kim, Gyu-Deok;Kim, Il-Goo;Choi, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1090-1097
    • /
    • 2008
  • This study conducted the decision method of lateral flow in abutment structures founded on the soft soils and the reliability analysis on the foundation pile for abutment. On the basis of the results, this study proposed the reliability design model. Reliability analysis was conducted by applying second moment method, point estimation method, and expected total cost minimization to lateral movement index, lateral movement decision index, modified lateral movement decision index, and circular failure safety factor for the decision criteria of lateral flow. The reliability index by analysis method had a similar tendency each other. Point estimation method was found as a practical method in the aspect of convenience because it could conduct the analysis only by mean and standard deviation as well as the partial derivative on random variables was not necessary. Optimum reliability index and optimum safety according to increasing in failure factors and load ratio were analyzed and loads and resistance factors of the design criteria of optimum reliability were estimated. It presented rational design model which can consider construction level and stability and economical efficiency overall.

  • PDF