• Title/Summary/Keyword: Foundation Plate

Search Result 473, Processing Time 0.022 seconds

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test (대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석)

  • Kang, Min-Su;Jo, Myung-Su;Koh, Yong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Numerical and experimental study on evaluating the depth of caisson foundation with Sonic Echo method

  • Tong, Jian-Hua;Liao, Shu-Tao;Liu, Kang-You
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.519-532
    • /
    • 2012
  • Using nondestructive testing techniques to evaluate the length or depth of an existing foundation is an important issue with potential high application values. One of these is to evaluate whether the foundation is broken after severe earthquakes. In this aspect, academic research related to nondestructive evaluation for caisson foundations is rarely reported. The objective of this paper is to study the feasibility of using Sonic Echo method to evaluate the depth of caisson foundations. Two types of caissons, simple cylindrical caisson and compound caisson with chambers, were studied for their responses to the Sonic Echo tests. The study was carried out in numerical simulation with finite element method and experimental way with in-situ tests. A bridge system which spans over Sofong Brook in Taiwan was selected for the tests in situ. The bridge system is still under construction and therefore the effect of different construction stages on the testing results may be studied. In this paper, the parameters to be varied for the studies include the testing locations and the existence of chamber plates, the bottom plate and the top plate. Finally some preliminary conclusions can be reached for a successful test.

Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.55-66
    • /
    • 2019
  • This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented numerical results can serve as benchmarks for future analysis of such structures.

The Model Test on Load Reduction Effect of Caps Foundation Method (캡스기초공법의 하중경감효과에 관한 모형시험)

  • Park, Jong-Man;Kang, Chi-Gwang;Kwak, Jung-Min;Han, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.479-486
    • /
    • 2019
  • The caps foundation method can reduce the load of a building by using the arching effect, but verification of the method is still insufficient. In this paper, a model test was performed to quantitatively prove the load reduction effect by this method. The test was carried out using six conditions according to the size of caps foundation block and the area of the loading plate. The test results show that the earth pressure was the highest at the position closest to the loading point regardless of the size of caps foundation block and the area of the loading plate. At the highest earth pressure position, when the loading plate area was 30 cm × 30 cm, the earth pressure of a small block was reduced by 35.4% on average, and that of a big block was reduced by 39.7% compared to the pressure with no block. When the loading plate area was 60 cm × 60 cm, the earth pressure of the small block was reduced by 33.9% on average, and the earth pressure of the big block was reduced by 42.7%. Therefore, if the caps foundation method is applied, the load will be reduced by more than 33% for a small block and 39% for a big block.

Exact solution for transverse bending analysis of embedded laminated Mindlin plate

  • Heydari, Mohammad Mehdi;Kolahchi, Reza;Heydari, Morteza;Abbasi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.661-672
    • /
    • 2014
  • Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton's principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflection of the laminated plate increases with increasing the plate width and length.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Thick laminated circular plates on elastic foundation subjected to a concentrated load

  • Sheng, Hongyu
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.441-449
    • /
    • 2000
  • In this study, the state equation for axisymmetric bending of laminated transversely isotropic circular plates on elastic foundation is established on the basis of three-dimensional elasticity. By using the expansions of Bessel functions, an analytical solution of the problem is presented. As a result, all the fundamental equations of three-dimensional elasticity can be satisfied exactly and all the independent elastic constants can be fully taken into account. Furthermore, the continuity conditions at the interfaces of plies can also be satisfied.

Free Vibrations of Thick Plates with Concentrated Masses on In-homogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 집중질량을 갖는 후판의 자유진동)

  • 이용수;이병구;김일중;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-289
    • /
    • 2003
  • Recently, as high-rise buildings increase steeply, sub-structures of them are often supported on in-homogeneous foundation. And there are many machines in sub-structures of buildings, and slabs of sub-structures are affected by vibration which they make. This paper deals with vibration of plates with concentrated masses on in-homogeneous foundation. Machines on plates are considered as concentrated masses. In-homogeneous foundation is considered as assigning $k_{w1}$ and $k_{w2}$ to Winkler foundation parameters of central region and side region of plate respectively, and foundation is idealized to use Pasternak foundation model which considered both of Winkler foundation parameter and shear foundation parameter. In this paper, applying Winkler foundation parameters which $k_{w1}$and $k_{w2}$ are 10, $10^2$, $10^3$ and shear foundation parameter which are 10, 20 respectively, first natural frequencies of thick plates with concentrated masses on in-homogeneous foundations are calculated.

Analysis of Stratified Rock under Vertical Load in Pile Foundation of Wind Turbine Using Circular Foundation Analysis Method with Equivalent Effective Width (등가유효폭을 가진 원형기초해석법을 이용한 풍력발전기 말뚝기초의 연직하중에 대한 층상암반 해석)

  • Kim, Dohan;Park, Sangyeol;Moon, Kyoungtae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2411-2425
    • /
    • 2013
  • In the design of pile foundation on the rock layer in the stratified structure with sedimentary and rock layers, the structural analysis of the stratified rock layer is required to determine the failure modes (flexural failure, punching shear failure or end bearing failure) and the bearing capacity of the rock layer. However, the existing usable Elastic Plate Analysis Method (EPAM) suggested by ACI committee 436 and Korean Code Requirements for Structural Foundation Design is very complex, and engineers have many difficulties in using it. Therefore, in this research, we proposed the relatively simple Circular Foundation Analysis Method (CFAM) with the concept and the equation of the equivalent effective width (radius) instead of the complex EPM, and the related equations of bending moment and shear force to be equal to the analysis results of EPAM. As a result, the proposed CFAM using the equivalent effective width (radius) is simple and convenient to use, and the analysis results of it are very good in their accuracies comparing those of EPAM and Finite Element Method.