Browse > Article
http://dx.doi.org/10.12989/sem.2019.70.1.055

Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation  

Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Structural Engineering and Mechanics / v.70, no.1, 2019 , pp. 55-66 More about this Journal
Abstract
This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented numerical results can serve as benchmarks for future analysis of such structures.
Keywords
wave propagation; functionally graded anisotropic materials; nonlocal strain gradient theory; four variable shear deformation refined plate theory; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299.   DOI
2 Aminipour, H. and Janghorban, M. (2017), "Wave propagation in anisotropic plates using trigonometric shear deformation theory", Mech. Adv. Mater. Struct., 24(13), 1135-1144.   DOI
3 Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 1-20.
4 Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216.   DOI
5 Karami, B., Janghorban, M. and Tounsi, A. (2018e), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264.   DOI
6 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61.   DOI
7 Karami, B., Shahsavari, D. and Janghorban, M. (2018f), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512.   DOI
8 Karami, B., Shahsavari, D. and Janghorban, M. (2018g), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057.   DOI
9 Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019a), "Wave propagation of porous nanoshells", Nanomater., 9(1), 22.   DOI
10 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018h), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111.   DOI
11 Rahmani, O., Refaeinejad, V. and Hosseini, S. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350.   DOI
12 Nami, M.R. and Janghorban, M. (2014), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Mod. Phys. Lett. B, 28(3), 1450021.   DOI
13 Nami, M.R. and Janghorban, M. (2015), "Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory", J. Brazil. Soc. Mech. Sci. Eng., 37(1), 313-324.   DOI
14 Nejad, M.Z. and Hadi, A. (2016), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9.   DOI
15 Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920.   DOI
16 Polizzotto, C. (2003), "Gradient elasticity and nonstandard boundary conditions", Int. J. Sol. Struct., 40(26), 7399-7423.   DOI
17 Romano, G. and Barretta, R. (2017), "Nonlocal elasticity in nanobeams: The stress-driven integral model", Int. J. Eng. Sci., 115, 14-27.   DOI
18 Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499.   DOI
19 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018a), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78.   DOI
20 Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doublycurved shells", Compos. Struct., 190, 91-111.   DOI
21 Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int. J. Mech. Sci., 53(9), 786-792.   DOI
22 Apuzzo, A., Barretta, R., Luciano, R., De Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111.   DOI
23 Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693.   DOI
24 Barretta, R., Luciano, R., De Sciarra, F.M. and Ruta, G. (2018), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Eur. J. Mech.-A/Sol., 72, 275-286.
25 Batra, R., Qian, L. and Chen, L. (2004), "Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials", J. Sound Vibr., 270(4-5), 1074-1086.   DOI
26 Karami, B., Shahsavari, D. and Li, L. (2018k), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stress., 41(4), 483-499.   DOI
27 Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702.   DOI
28 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249.   DOI
29 Karami, B., Shahsavari, D., Karami, M. and Li, L. (2019), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", J. Mech. Eng. Sci., 233(6), 2149-2169.   DOI
30 Karami, B., Shahsavari, D. and Li, L. (2018j), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimens. Syst. Nanostruct., 97, 317-327.   DOI
31 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", J. Mech. Eng. Sci., 233(1), 287-301.   DOI
32 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018l), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362.   DOI
33 Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2018), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 1-19.
34 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605.   DOI
35 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361.   DOI
36 Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98.   DOI
37 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018b), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62.   DOI
38 Sahmani, S. and Fattahi, A. (2017), "Calibration of developed nonlocal anisotropic shear deformable plate model for uniaxial instability of 3D metallic carbon nanosheets using MD simulations", Comput. Meth. Appl. Mech. Eng., 322, 187-207.   DOI
39 Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", J. Mater.: Des. Appl., 231(5), 463-478.
40 Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircr. Spacecr. Sci., 5(6), 671-689.   DOI
41 Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861.   DOI
42 Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mech., 229(11), 4549-4573.   DOI
43 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Expr., 4(8), 085013.   DOI
44 Shahsavari, D., Karami, B. and Li, L. (2018b), "Damped vibration of a graphene sheet using a higher-order nonlocal straingradient Kirchhoff plate model", Compt. Rend. Mecan., 346(12), 1216-1232.   DOI
45 Dash, S., Sharma, N., Mahapatra, T., Panda, S. and Sahu, P. (2018b), "Free vibration analysis of functionally graded sandwich flat panel", Mater. Sci. Eng., 377(1).
46 Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442.   DOI
47 Challamel, N. and Wang, C. (2008), "The small length scale effect for a non-local cantilever beam: A paradox solved", Nanotechnol., 19(34), 345703.   DOI
48 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733.   DOI
49 Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3(3), 2573-2592.   DOI
50 Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690.   DOI
51 Ehyaei, J., Farazmandnia, N. and Jafari, A. (2017), "Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory", Struct. Eng. Mech., 63(4), 471-480.   DOI
52 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
53 Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144.   DOI
54 Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94.   DOI
55 Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402.   DOI
56 Lagnese, J. (1989), Boundary Stabilization of Thin Plates, Philadelphia, SIAM Studies in Applied Mathematics, 10.
57 Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508.   DOI
58 Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimes. Syst. Nanostruct., 75, 118-124.   DOI
59 Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Sol., 78, 298-313.   DOI
60 Ma, H., Gao, X.L. and Reddy, J. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Sol., 56(12), 3379-3391.   DOI
61 She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35.   DOI
62 Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", Mater. Sci. Eng., 178(1), 012031.
63 Mehar, K. and Panda, S.K. (2017a), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298.   DOI
64 Shahsavari, D., Karami, B. and Li, L. (2018c), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66.   DOI
65 Shahsavari, D., Karami, B. and Mansouri, S. (2018d), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Sol., 67, 200-214.   DOI
66 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018e), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149.   DOI
67 She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368.   DOI
68 She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74.   DOI
69 She, G.L., Yuan, F.G. and Ren, Y.R. (2018c), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74.   DOI
70 She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142.   DOI
71 Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Mod. Phys. Lett. B, 30(36), 1650421.   DOI
72 Shimpi, R. and Patel, H. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vibr., 296(4), 979-999.   DOI
73 Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146.   DOI
74 Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlin. Dyn., 79(3), 1771-1785.   DOI
75 Guo, J., Chen, J. and Pan, E. (2017), "Free vibration of threedimensional anisotropic layered composite nanoplates based on modified couple-stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 87, 98-106.   DOI
76 Hirwani, C., Biswash, S., Mehar, K. and Panda, S.K. (2018), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", Mater. Sci. Eng., 012019.
77 Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252.   DOI
78 Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Modell., 65, 303-317.   DOI
79 Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66.   DOI
80 Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390.   DOI
81 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110.   DOI
82 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Sci. Iranic., 25(5), 2722-2737.
83 Mehar, K. and Panda, S.K. (2017b), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Comput. Meth., 14(2), 1750019.   DOI
84 Mehar, K. and Panda, S.K. (2018), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23.   DOI
85 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018a), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", J. Aerosp. Eng., 0954410018761.
86 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046.   DOI
87 Moradweysi, P., Ansari, R., Hosseini, K. and Sadeghi, F. (2018), "Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory", Appl. Math. Modell., 54, 594-604.   DOI
88 Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809.   DOI
89 Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Analy., 16(1), 51-78.   DOI
90 Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426.   DOI
91 Volokh, K.Y. and Hutchinson, J. (2002), "Are lower-order gradient theories of plasticity really lower order?", J. Appl. Mech., 69(6), 862-864.   DOI
92 Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76.   DOI
93 Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vibr. Contr., 23(13), 2078-2093.   DOI
94 Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415.   DOI
95 Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388.   DOI
96 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374.   DOI
97 Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", International J. Sol. Struct., 39(10), 2731-2743.   DOI
98 Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28.   DOI