• 제목/요약/키워드: Fouling mechanism

검색결과 59건 처리시간 0.024초

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu;Aryanti, Putu T.P.;Wardani, Anita K.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.353-361
    • /
    • 2018
  • Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

Fouling mechanism and screening of backwash parameters: Seawater ultrafiltration case

  • Slimane, Fatma Zohra;Ellouze, Fatma;Amar, Nihel Ben
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.298-308
    • /
    • 2019
  • This work deals with the membrane fouling mode and the unclogging in seawater ultrafiltration process. The identification of the fouling mechanism by modeling the experimental flux decline was performed using both the classical models of Hermia and the combined models of Bolton. The results show that Bolton models did not bring more precise information than the Hermia's and the flux decline can be described by one of the four Hermia's models since the backwash interval is ${\leq}60$ min. An experimental screening study has been then conducted to choose among 5 parameters (backwash interval, duration, pulses and the flow-rate or injected hypochlorite concentration) those that are the most influential on the fouling and the net water production. It has emerged that fouling is mainly affected by the backwash interval; its prolongation from 30 to 60 min engenders an increase in the reversible fouling and a decrease in the irreversible fouling. This later is also significantly reduced when the hypochlorite concentration increases from 4.5 to 10 ppm. Moreover, the net water production significantly increases with increasing the filtration duration up to 60 min and decreases with decreasing the backwash duration and backwash flow-rate from 10 to 40 s and from 15 to ${\geq}20L.min^{-1}$, respectively.

Fouling evaluation on nanofiltration for concentrating phenolic and flavonoid compounds in propolis extract

  • Leo, C.P.;Yeo, K.L.;Lease, Y.;Derek, C.J.C.
    • Membrane and Water Treatment
    • /
    • 제7권4호
    • /
    • pp.327-339
    • /
    • 2016
  • Nanofiltration is useful to concentrate propolis extract. During the selection of membrane, both compound rejection and permeate flux are important indicators of process economy. Brazilian green propolis extract was studied to evaluate the separation performance of Startmen 122 and NF270 membranes. Compared to Starmen 122, NF270 membrane showed better rejection of bioactive compounds. The flux decline patterns were further studied using Hermia's model. Cake formation is the major fouling mechanism on the hydrophobic surface of Starmen 122. While the fouling mechanism for NF270 is pore blocking. The fouled membranes were further characterized using SEM and FT-IR to confirm on the predicted fouling mechanisms.

가압식 멤브레인 수처리에서 수리학적 세정이 파울링 기작에 미치는 영향 (Hydraulic Cleaning Effect on Fouling Mechanisms in Pressurized Membrane Water Treatment)

  • 아민 샬피;장호석;김정환
    • 멤브레인
    • /
    • 제27권6호
    • /
    • pp.519-527
    • /
    • 2017
  • 멤브레인 파울링은 지표수를 처리하는 저압 멤브레인 기술 적용의 확장에 있어 큰 장애가 된다. 따라서 파울링 제어를 위한 주기적인 수리학적 세정기술의 최적화는 매우 중요하다. 주기적인 수리학적 세정과 이와 연관된 파울링 현상에 관한 올바른 이해는 멤브레인 세정 전략을 최적화하기 위해 매우 유용할 수 있다. 실험적으로 측정한 투과도와 전통적인 Hermia 파울링 모델 예측 치의 비교를 통해, 본 연구에서는 합성 탁도유발 시료를 처리하는 가압식 멤브레인 공정에서 30분 여과와 정세정/역세정이 포함된 1분 세정조건을 바탕으로 6번의 운전사이클을 통해 발생하는 파울링 현상을 분석하고 이를 통해 지배적인 파울링 기작을 정량적으로 이해하고자 하였다. 단독 세정에서, 첫 번째 운전사이클에서 발생하는 파울링은 완전공극막힘 현상에 의해 주로 지배되었고 마지막 운전 사이클에서는 케이크 형성이 지배적인 파울링 기작으로 관찰되었다. 정세정과 역세정이 혼합된 경우, 파울링 속도는 감소하였으나 전반적으로 케이크 형성이 주 파울링 기작으로 관찰되었다.

Investigation of Al-hydroxide Precipitate Fouling on the Nanofiltration Membrane System with Coagulation Pretreatment: Effect of Inorganic Compound, Organic Compound, and Their Combination

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.149-157
    • /
    • 2011
  • Nanofiltration (NF) experiments were conducted to investigate fouling of Al-hydroxide precipitate and the influence of organic compound, inorganic compound, and their combination, i.e., multiple foulants. $CaCl_2$ and $MgSO_4$ were employed as surrogates of inorganic compounds while humic acid was used as surrogate of organic compound. The flux attained from NF experiments was fitted with the mathematical fouling model to evaluate the potential fouling mechanisms. Al-hydroxide fouling with a cake formation mechanism had little effect on the NF membrane fouling regardless of the Al concentration. The NF fouling by Al-hydroxide precipitate was deteriorated in presence of inorganic matter. The effect of Mg was more critical in increasing the fouling than Ca. This is because the Mg ions enhanced the resistances of the cake layer accumulated by the Al-hydroxide precipitate on the membrane surfaces. However, the fouling with Mg was dramatically mitigated by adding humic acid. It is interesting to observe that the removal of the conductivity was enhanced to 61.2% in presence of Mg and humic acid from 30.9% with Al-hydroxide alone. The influence of dissolved matter (i.e., colloids) was more negative than particulate matter on the NF fouling for Al-hydroxide precipitate in presence of inorganic and organic matter.

실험실용 판형 열교환 시스템에서 가시화를 이용한 파울링 기구 해석 (Analyses of Fouling Mechanism using Visualization Techniques in a Lab-scale Plate-Type Heat Exchanging System)

  • 성순경;서상호;노형운
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.349-354
    • /
    • 2004
  • Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When the scale deposits in a heat exchanger surface, it is conventionally called fouling. The objective of the present study is to analyze the process of the fouling formation in a heat exchanger according to different types of water using visualization techniques. In order to experimentally investigate the formation of the fouling, this study built a lab-scaled heat exchanging system. Using the visualization techniques of Scanning Electron Microscopy (SEM) and X-Ray diffraction method, the three dimensional configurations of the fouling formation could be successfully obtained. Based on the experimental results, it was found that the configurations of the fouling formation were different when using tap water compared to river water.

해석적 방법을 통한 압축기의 파울링 해석 (Prediction of Compressor Fouling Using an Analytic Method)

  • 송태원;김동섭;김재환;노승탁
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.176-183
    • /
    • 2000
  • The performance of gas turbines decreases as their operating hours increase. Compressor fouling is the main reason for this time-dependent performance degradation. Airborne particles adhere to the blade surface and results in the change in the blade shape. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth is very small compared with blade dimensions. In this study, an analytic method to predict the motion of particles and their deposition inside axial flow compressors is proposed. The analytic model takes into account the blade shape and the flow within the blade passage. Comparison of simulation result with field data shows the feasibility of the model. Influence of the particle distribution on the compressor fouling is also examined.

  • PDF

Fouling Mechanism of Microfiltration/Ultrafiltration by Macromolecules and a Suppression Strategy from the Viewpoint of the Hydration Structure at the Membrane Surface

  • Akamatsu, Kazuki;Nagumo, Ryo;Nakao, Shin-ichi
    • 멤브레인
    • /
    • 제30권4호
    • /
    • pp.205-212
    • /
    • 2020
  • This short review focuses on fouling by proteins and macromolecules in microfiltration/ultrafiltration. First, an experimental system that enables investigation of how the extent of the adsorption of proteins and macromolecules on membrane surfaces contributes to a decrease in filtrate flux in microfiltration/ultrafiltration is described. Using this system, a causal relationship - not a correlation - indicating that adsorption results in a decrease in filtrate flux could be clearly demonstrated in some cases. Second, a hydration structure at the membrane surface that can suppress adsorption is discussed, inspired by biomaterial research. In their hydrated states, polymers with low-fouling properties have water molecules with a particular structure. Finally, some successful examples of the development of low-fouling membranes via surface modification using low-fouling polymers are discussed.