• Title/Summary/Keyword: Foulbrood disease

Search Result 10, Processing Time 0.026 seconds

Prevalence of honeybee (Apis mellifera) disease in Cheonan-Asan areas, Korea (천안·아산지역 양봉농가 꿀벌질병 감염률 조사)

  • Jeon, Dong-Min;Kim, Sun-Hee;Yook, Sim-Yong;Yeam, Nam-Hee;Do, Jin-Young;Song, Seo-Young;Heo, Eun-Jin;Sin, Chang-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.2
    • /
    • pp.147-150
    • /
    • 2013
  • This study was carried out to investigate the prevalence of honeybee (Apis mellifera) disease in cheonan and asan area. From September to November in 2012, 33 samples were collected from 33 apiculture farms in the regions and reverse transcriptase-polymerase chain reaction (RT-PCR) and polymerase chain reaction (PCR) was conducted. Among 33 samples, prevalence rate was 42% in Sac Brood Virus (SBV), 52% in Nosema, 21% in American foulbrood (AFB), 70% in European foulbrood (EFB), 97% in Stonebrood, 3% in Chalkbrood. The result indicate that stonebrood was most prevalent disease in apiculture farms in cheonan and asan area.

Identification of Diagnostic PCR Markers for Honeybee Foulbrood Disease from Specific Genes of Paenibacillus larvae (부저병 원인균 Paenibacillus larvae 특이 유전자 분석을 통한 진단마커 발굴)

  • Na, Han-Heom;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.67-71
    • /
    • 2017
  • Foulbrood disease is infected by Paenibacillus larvae on larval stage of honeybee, and is lethal disease to result in population death. This disease was manifested in 2008 in Korea, is still suffered by the secondary damages. In this study, we are to examine diagnostic PCR approaches to manage the Foulbrood disease. PCR amplification of 16S rRNA is generally using for microbial infection, but the specificity is little poor for the correct diagnosis. Therefore, we are to identify specific genes expressed in Paenibacillus larvae, and perform PCR analysis. We selected five distinct genes from literature references. Those genes are commonly known as toxic genes for host infection, and include Toxin1, Toxin2A & 2B, SplA, CBP49, and SevA&SevB. PCR amplification for these genes is difficult to detect at the first time. So, we performed the second PCR using the first PCR product as a template. This approach using the nested PCR was very useful for detecting large marker genes. When Paenibacillus larvae was cultured in the medium containing plant extracts, PCR amplification of the identified genes is correlated with the microbial growth inhibition. Therefore, these results suggest that the identified genes might be useful to study diagnostic PCR markers for honeybee Foulbrood disease.

Incidences of Foulbrood in Apiaries and Eradication Campaign for Control (꿀벌 부저병의 발생확인과 방역대책)

  • Kang Yung-Bai;Kim S.H.;Jang H.;Kim C.S.;Kim J.Y.;Kwon Y.B.;Rhee Y.O.;Park J.M.;Chung U.I.;Kim K.S.;Shin J.B.
    • Journal of the korean veterinary medical association
    • /
    • v.23 no.5
    • /
    • pp.289-301
    • /
    • 1987
  • Outbreaks of foulbrood in honey bees rearing on Cheju Island(an apiary with 172 colonies) and in Pusan City(an apiary with 100 colonies) were reported in April, 1987. The disease striked on Cheju Island was identified as American foulbrood caused by Bacil

  • PDF

Honokiol as an Effective Antimicrobial Compound against Causative Agent of American foulbrood, Paenibacillus larvae

  • Song, Hyunchan;Kim, Ki-Young
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.131-136
    • /
    • 2019
  • Recently, number of honeybees (Apis mellifera) has visibly decreased because they are vulnerable to some diseases like American foulbrood disease. American foulbrood disease, which is caused by Paenibacillus larvae, is emerged as great cause of decrease in number of honeybees. After antibiotic-resistant strain emerged, it is now more difficult to treat those pathogens successfully. Researches on finding alternative antibacterial compound are ongoing. In this study, we examined the antibacterial effect of honokiol on P. larvae. Honokiol showed great antibacterial effect with minimum inhibitory concentration of 12.5 ㎍/mL and minimum bactericidal concentration of 50 ㎍/mL. An agar diffusion test also confirmed the anti-Paenibacillus larvae activity of honokiol with an inhibitory zone of 9±0.5 mm. Since honokiol is known to interact membrane of some bacteria, we measured 260 nm absorbing particles, which could be induced by leakage of cells, and confirmed that the leakage of P. larvae occurred in dose-dependent manners. However, result of crystal violet assay suggested that honokiol has only mild anti-biofilm formation effect on P. larvae, which means honokiol controls the bacteria by inducing the bursting of membrane. Finally, an additive effect of honokiol with tetracycline and terramycin was found using a checkerboard assay with a fractional inhibitory concentration index value of 0.5.

Reduction effect of bee disease caused by propolis feeding in beekeeping farm (양봉농가에서 생산된 프로폴리스 급여에 따른 꿀벌 질병의 저감효과)

  • Kim, Ji Yeon;Choi, In Su;Ann, Ah Jin;Jeong, Ha Jin;Jang, Mi Sun;Cho, Young Kwan;Kim, Yong Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.85-92
    • /
    • 2019
  • The study was conducted to investigate the effect of propolis on the increase of the immunity of honeybee bees by gradually administering the bees' propolis to bees. 0.16% and 0.3% 0.6% Propolis were administered at intervals of 2 weeks for 2 months, respectively, and 16 kinds of representative diseases of bees were tested. As a result, less bee disease was observed directly in the 0.3% propolis-administered group. In the next year, bees and a newborn bee showed a decrease in the incidence of bee disease and American foulbrood in bees administered with propolis. Based on the results of these studies, it was confirmed that propolis administration in bees helps to enhance immunity of bees and is effective in controlling American foulbrood.

Prevalence of honeybee (Apis mellifera) disease in Daejeon (대전광역시 양봉농가의 꿀벌질병 감염률 조사)

  • Kim, Young-ju;Kim, Jong-ho;Oh, Yoon-hee;Lee, Sang-joon;Song, Sun-kyong;Joung, Eun-young;Lee, Sang-joon;Lee, Seok-ju;Moon, Byeong-cheon
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This study was conducted to investigate the prevalence of honey bee (Apis mellifera) disease in Daejeon. From May to September in 2014, 63 samples were collected from 63 apiculture farms in the regions and reverse transcriptase-polymerase chain reaction (RT-PCR) and polymerase chain reaction (PCR) was conducted. A total of 11 infectious pathogens, including 6 virus, 2 bacteria, 2 fungi, and 1 parasite, were investigated in honeybee colonies suffering from symptom of sudden collapse, depopulation or paralysis. The infectious pathogens and infection rates among 63 honeybee colonies detected were as follows: sacbrood virus (12.7%), chronic bee paralysis virus (1.6%), stonebrood (11.1%), American foulbrood (19.0%), European foulbrood (6.3%), respectively. The result indicate that foul-brood was most prevalent disease in apiculture farms in Daejeon area.

Apis cerana Beekeeping and Sacbrood Disease Management in Vietnam: Review

  • Thai, Pham Hong;Huyen, Nguyen Thi;Toan, Tran Van;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Beekeeping status of Apis cerana with emphasis of experiences overcoming sacbrood virus disease are presented. Social bee fauna are rich in Vietnam with 6 honeybee species (Apis laboriosa, Apis dorsata, Apis mellifera, Apis cerana, Apis andrenifomis, Apis florea); 8 stingless bee species (Trigona laeviceps, Trigona ventralis, Trigona pagdeni, Trigona gressitti, Trigona fuscobalteata, Trigona capenteri, Trigona scintillans Trigona iridipenis) and 2 bumble bee species (Bumbus haemorrhoidalis, B. breviceps). All of them are native except A. mellifera which was introduced in1887. These bees are slated for conservation by the Ministry of Agriculture & Rural Development. Honey and other bee products are mainly harvested from 3 species including A. cerana, A. mellifera and A. dorsata. The manageable species (A. cerana and A. mellifera) are increasing in number, reaching about 1,500,000 beehives. Vietnam is the second largest honey exporter in Asia, with a total of about 48,000 tons of honey exported to the international market in 2014. A. cerana plays an important role in poverty alleviation in mountainous and remote areas of Vietnam. Honeybee suffers from various diseases of Sacbrood virus disease (SBV), European foulbrood (EFB), Nosema, and parasitic mites of Tropilaelaps mercedes and Varroa destructor. Most of these diseases can be resolved with biocontrol methods. For the parasitic mites, Vietnamese beekeepers usually apply formic acid.

Development of Ultra-Rapid Multiplex PCR Detection against 6 Major Pathogens in Honeybee (꿀벌 6종 주요 병원체에 대한 초고속 다중 PCR 검출법의 개발)

  • Lim, Su-Jin;Kim, Jung-Min;Lee, Chil-Woo;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.1
    • /
    • pp.27-39
    • /
    • 2017
  • PCR-chip-based ultra-rapid multiplex PCRs for detection of six major infectious pathogens in honeybee were developed. The 6 kinds of major infectious pathogens in honeybee included Paenibacillus larvae causing American Foulbrood, Melissococcus plutonius causing European Foulbrood as bacteria, Ascosphaera apis (Chalkbrood), Aspergillus flavus (Stonebrood), Nosema apis and Nosema ceranae (Nosemosis) as fungi. The developed PCR-chip-based ultra-rapid multiplex PCR showed successful amplification for all six major pathogens in the presence of more than $10^3$ molecules. The time for confirming amplification (Threshold cycles; Ct-time) was about 7 minutes for two species, and about 9 minutes for four species. Total 40 cycles of PCR took 11 minutes 42 seconds and time for melting point analysis was 1 minute 15 seconds. Total time for whole PCR detection was estimated 12 minutes 57 seconds (40 cycles of PCR and melting point analysis). PCR-chip based ultra-rapid multiplex PCR using standard DNA substrates showed close to 100% accuracy and no false-amplification was found with honeybee genomic DNA. Ultra-rapid multiplex PCR is expected to be a fast and efficient pathogen detection method not only in the laboratory but also in the apiary field.

Polyclonal Antibody against Paenibacillus larvae and its Application (Paenibacillus larvae에 대한 다클론 항체 및 그 응용)

  • 백경찬;양옥순;정규회;윤병수
    • Korean journal of applied entomology
    • /
    • v.41 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Paenibacillus larvae is a gram-positive, spore-forming bacterium that is etiological agent for american foulbrood disease (AFB), which is the most severe disease in honey bee. To detect P. larvae from infected honeybee-comb or larvae, polyclonal antibody against whole bacterium was produced from guineapig and its specificity was evaluated. After optimization of ELISA-based detection system using these antibodies, a number of different P. larvae strains were analysed. Polyclonal antibody against P. larvae ATCC 25747 showed high affinity to most strains of P. larvae including P. larvae. strain ATCC 9545 (type strain), ATCC 25747 and other korean strain, SJl5 but exhibited no cross-reaction with other bacterial species. Additionally, this type of ELISA system was used for the detection of AFB in field-application The results have shown that this antibody could be useful for the rapid identification and monitoring of P. larvae in honeybee-comb.

Analysis of streptomycin in honey by LC-MS/MS (LC-MS/MS를 이용한 벌꿀 중 스트렙토마이신 분석)

  • Shim, Young-Eun;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.424-431
    • /
    • 2008
  • Streptomycin, which is one of aminoglycoside antibiotics, has been widely used in the rearing of food-producing animals to prevent and treat diseases in cattle, pigs and poultry. Although not licensed in South Korea, streptomycin has also been used for the treatment of bacterial honeybee disease, such as European foulbrood in Third World countries. A reliable and effective method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of streptomycin in honey. A established method was optimized the clean-up and extraction procedure for the trace determination, good precision and accuracy. And the chromatographic and tandem mass spectrometric parameters were also optimized. The precision (RSD) and accuracy (bias) in the concentration range of 5.0~50.0 ug/kg were 5.5~14% and -10.0~8.0%, respectively. Limit of detection was 0.75 ug/kg and recovery of streptomycin spiked at level of 10 ug/kg in honey was 74%. The established and validated method was applied to determine streptomycin in honey which was on the market.